Расчет несущей способности сваи по грунту

Технология создания буронабивных свай

Чтобы проведение расчетов и строительство дома на данных основаниях было верным, необходимо руководствоваться ГОСТ 12730.0-78; ГОСТ 12730.4-78; ГОСТ 12730.5-84, а также ТР 100-99. В данных нормативных документах указываются параметры готовых и приготовляемых свайных элементов. Поэтапно же технология выглядит так:

  1. Строительная площадка предварительно размечается посредством колышков и натягивается жилка для отметки места расположения свай.
  1. Отметить место бурения скважины, используя отвес, опускаемый с жилки на грунт. В точку вбить колышек.
  2. Убрать жилки, чтобы получился участок с точными местами разметок под бурение шурфов.

Изготовить сваи можно садовым буром, но проще всего это сделать используя бур ТИСЭ или бензобур. Таблица расчетов диаметра свай по СНиП и ГОСТ такова:

Диаметр сваи (мм)Площадь опоры (см2)Несущая способность (кг)Объем бетона (м3)Количество вертикальных прутков арматуры (шт)Расход арматуры (м/п)
15017710620,035437
20031418840,062849
25049129460,0982410
30070742420,1414614
400125675360,2512818

В целом же данные СНиП применяются для расчетов только исходя из того, какая несущая способность буронабивной сваи требуется в каждом индивидуальном случае. Глубина погружения сваи должна быть ниже точки промерзания грунта минимум на 30 см. Поэтому необходимо для начала осуществить бурение скважин, а только потом заливать их бетоном, однако на практике и при изготовлении основы своими руками, данный вариант неприемлем: готовые шурфы могут осыпаться, пока идет бурение остальных шурфов.

Есть и менее трудоемкий способ, если взять штыковую лопату с краем ширины 10 см, удлинить ручку так, чтобы она доставала до дна шахты. Таким образом получается неплохой инструмент для обрезания грунта со стенок скважины до получения необходимого диаметра.

Для увеличения несущей способности фундамента необходима арматура. Армирование буронабивных свай используется для обустройства фундамента в грунтах, где есть риск нестабильности, подвижек – такие армокаркасы повышают стойкость свай на разрыв. А вот сделать армирование несложно: взять нужное количество арматурных прутов диаметра 10-12 мм, зафиксировать прутки в каркас посредством вязальной проволоки или сварки.

Осталось лишь погрузить на дно скважины обсадную трубу, залить смесь на треть, затем поднять трубу, уплотнить бетон, снова залить смесь на треть, не забывая армирование, утрамбовать, залить слой бетона и выполнить оголовок. Стоит помнить, что каркасы буронабивных свай из прутков погружаются с таким расчетом, чтобы наружу выходили прутья для связки с ростверком.

Подготовка к расчету

Конструкция буронабивных свай

Исходные данные, которые понадобятся для расчета несущей способности буронабивной сваи, получают в итоге проведения геологических изысканий и подсчета общей предполагаемой нагрузки здания. Это обязательные этапы расчета, проведение которых обосновано теорией расчета прочностных характеристик буронабивных фундаментов.

Такие показатели как глубина промерзания, уровень залегания грунтовых вод, разновидность грунта и его механические характеристики очень важны для получения точного результата. Информация о глубине промерзании грунта находится в СНиП 2.02.01-83*, данные разделены по климатическим районам, представлены картографически и в виде таблиц.

Расчет массы постройки ведут с учетом климатического района, расположения здания относительно румба ветров, среднего количества осадков в зимний период, массы строительных конструкций и оборудования. Этот показатель наиболее значим при проектировании фундамента – данные для проведения этой части расчета, а также схему и расчетные формулы можно найти в СНиП 2.01.07-85.

Проведение геологии

Шурф для проведения геологических изысканий

Проведение геологических изысканий ответственное мероприятие и в массовом поточном строительстве этим занимаются специалисты-геологи. В индивидуальном жилищном строительстве часто проводят самостоятельную оценку состояния грунтов. Не имея опыта проведения изысканий такого уровня очень сложно оценить реальное положение вещей. Работа грамотного специалиста по большей части заключается в визуальной оценке состояния напластований.

Для начала на участке устраивают шуфры – вертикальные выработки грунта прямоугольного или круглого сечения, глубиной от двух метров и шириной достаточной для визуального осмотра основания стенок ямы. Назначение шуфров – раскрытие почвы с целью осуществления доступа к напластованиям, скрытым под верхним слоем грунта. Геологи измеряет глубину пластов, берет пробу грунта из середины каждого слоя, а также впоследствии наблюдает за накоплением воды на дне забоя. Вместо шуфров могут устраиваться круглые скважины, из которых с помощью специального устройства вынимают керн или берут локальные пробы.

Все полученные данные заносятся в сводную таблицу.Кроме того, составляется профиль сечения грунта, который позволяет предугадать состояние грунтов в точках, где бурение не производилось. При самостоятельной оценке оснований следует руководствоваться сведениями, представленными в СНиП 2.02.01-83* и ГОСТ 25100-2011, где в соответствующих разделах представлены классификации грунтов с описаниями, методы визуального определения типов грунта и характеристики в соответствии с типами.

6.3 Расчет буронабивных свай

6.3.1 Расчеты свайных фундаментов и их элементов выполняются в соответствии с общими положениями СП 24.13330.2011, МГСН 2.07-01 [], МГСН 5.02-99 [].

6.3.2 При расчете буронабивных свай из виброштампованного бетона по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние способа производства работ при наличии в скважине воды и извлекаемых обсадных труб, γ’cb= 0,9.

6.3.3 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия

                                                               (1)

где N — расчетная вертикальная нагрузка, передаваемая на сваю, кН;

Fd — несущая способность (предельное сопротивление) грунта основания одиночной сваи, кН, называемая в дальнейшем несущей способностью сваи;

γ, γn, γk — коэффициенты, принимаемые согласно п. 7.1.11 СП 24.13330.2011.

6.3.4 Несущую способность Fd буронабивной сваи, работающей на сжимающую нагрузку, следует определять по формулам:

а) при объемном виброштамповании укладываемой бетонной смеси

Fd = γccRRA + UΣγcffihi),                                                (2)

где γс — коэффициент условий работы сваи, γc = 1;

γcR — коэффициент условий работы грунта под нижним концом сваи (для песков и супесей γcR = 1,1; для глин и суглинков γcR = 1; в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011);

R — расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое, согласно п. 7.2.7 СП 24.13330.2011;

А — площадь опирания сваи, м2, принимаемая равной:

— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;

— для буронабивных свай с уширением — площади поперечного сечения уширения в месте наибольшего его диаметра;

U — периметр поперечного сечения ствола сваи, м;

γcf — коэффициент условий работы грунта на боковой поверхности сваи (для любого типа грунта γcf = 0,9);

fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;

hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

б) при вибровтрамбовывании щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой грунта

Fd = γccR1RA + UΣγcffihi),                                               (3)

где γс — коэффициент условий работы сваи, γс = 1;

γcR1 — коэффициент условий работы, учитывающий особенности совместной работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта, принимаемый по таблице ;

R — расчетное сопротивление уплотненного грунта под подошвой буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в забой, кПа, принимаемое по таблице приложения ;

А — площадь опирания сваи, м2, принимаемая равной:

— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;

— для свай-оболочек, заполняемых бетоном, — площади поперечного сечения оболочки брутто;

U — периметр поперечного сечения ствола сваи, м;

γcf — коэффициент условий работы грунта на боковой поверхности сваи, принимаемый:

— при объемном виброштамповании укладываемой бетонной смеси (для любого типа грунта γсf = 0,9);

— в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 в зависимости от способа образования скважины и условий бетонирования;

fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;

hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.

Таблица 1 — Значения коэффициента γcR1

Значение коэффициента для пылевато-глинистых грунтов с показателем текучести IL

0,1

0,2

0,3

0,4

0,5

0,6

для песчаных грунтов

гравелистых

крупных

средней крупности

мелких

пылеватых

Пески средней плотности

0,8

1,0

1,1

Супеси, суглинки и глины

0,8

0,9

1,0

1,1

1,2

Примечания

1 Для промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.

2 Для гравелистых, крупных песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение сопротивлений производится по результатам опытных работ. Для предварительной оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 = 0,5.

6.3.5 При определении несущей способности буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта на боковой поверхности сваи, вызванное объединением сечений соседних свай в ряду.

Расчет свайного фундамента: простая и надежная методика

Расчет свайного фундамента выполняется в зависимости от его типа

Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания. В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.

Схема буронабивного фундамента

Перед тем, как рассчитать свайный фундамент рекомендуется ознакомиться с ГОСТ «Грунты. Классификация» приложение А. Там представлены основные определения, исходя из которых, тип грунта можно определить визуально.

Далее потребуется таблица с указанием прочности грунта в зависимости от его типа и консистенции. Все необходимые для расчета характеристики приведены на картинках ниже.

Глинистая почва в области подошвы сваиГлинистая почва по длине сваиПесчаный грунтКрупнообломочные породы

Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

  • нагрузка на сваю (с учетом ростверка);
  • нагрузка на ростверк.

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

Каркасная стена с утеплителем, толщиной 15 см30-50 кг/кв.м.
Деревянная стена толщиной 20 см100 кг/кв.м.
Деревянная стена толщиной 30 см150 кг/кв.м.
Кирпичная стена толщиной 38 см684 кг/кв.м.
Кирпичная стена толщиной 51 см918 кг/кв.м.
Гипсокартонные перегородки 80 мм без утепления27,2 кг/кв.м.
Гипсокартонные перегородки 80 мм с утеплением33,4 кг/кв.м.
Междуэтажные перекрытия по деревянным балкам с укладкой утеплителя100-150 кг/кв.м.
Междуэтажные перекрытия из железобетона толщиной 22 см500 кг/кв.м.
Пирог кровли с использованием покрытия из
листов металлической черепицы и металлических60 кг/кв.м.
керамочерепицы120 кг/кв.м.
битумной черепицы70 кг/кв.м.
Временные нагрузки
От мебели, людей и оборудования150 кг/кв.м.
от снегаопределяется по табл. 10.1 СП “Нагрузки и воздействия” в зависимости от климатического района

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

Постоянная для: – дерева – металла – изоляции, засыпок, стяжек, железобетона – изготавливаемых на заводе- изготавливаемых на участке строительства1,1 1,05 1,1 1,2 1,3
От мебели, людей и оборудования1,2
От снега1,4

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

  • шаг свай;
  • длина сваи до края ростверка;
  • сечение.

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.

Расположение арматуры

Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.

Вычисление коэффициентов постели

Для вычисления коэффициентов постели используются усредненные (в пределах зафиксированной глубины сжимаемой толщи HС) значения модуля деформации EГР и коэффициента бокового расширения mГР. Эти значения вычисляются по формулам.

Коэффициент постели С1 вычисляется тремя методами.

Метод 1. Коэффициент постели С1 вычисляется на основании усредненных значений EГР и mГР по формуле:

Метод 2. Коэффициент постели С1 вычисляется по формуле Винклера:

, где

Метод 3. Для определения коэффициента постели С1 используется формула метода 1. Отличие состоит в том, что для определения усредненного модуля деформации ЕГР3 вводится поправочный коэффициент u к величине модуля деформации i–того подслоя. Этот коэффициент изменяется от u1=1 на уровне подошвы фундамента до un=12 на уровне уже вычисленной границы сжимаемой толщи. Принято, что коэффициент u изменяется по закону квадратной параболы:

Кроме того, принимается, что дополнительное вертикальное напряжение по глубине распределено равномерно. Тогда

Суть метода 3 изложена в работах и состоит в том, что в действительности модуль деформации грунта по глубине нарастает. Не учет этого факта приводит к неоправданно завышенным значениям осадок, а, следовательно, и к заниженным значениям коэффициента постели С1.

Для методов 1 и 3 коэффициент постели С2 вычисляется по формуле:

Для метода 2 коэффициент постели С2 не вычисляется.

По результатам работы программы выполняется построение полей осадок, границ сжимаемой толщи, коэффициентов постели Пастернака и Винклера. Выполняется построение эпюр вертикальных напряжений в любой точке приложенной нагрузки (Рис. 4, 5).

Рис.5. Эпюра вертикального напряжения при различном распределении нагрузки вдоль свай

Расчет осадки свайного фундамента, как условного, строго в соответствии с нормами выполняется при K1, K2 = 0 и K3 = 1.

Если внешняя нагрузка на свайный фундамент задана на несколько уровней, то эпюра напряжений от нее будет иметь ступенчатый вид, отражающий уровни приложения соответствующих долей нагрузки. Так на Рис. 5-а показана эпюра вертикального напряжения при К1 = 0, К2 = 0, К3 = 1. На Рис. 5-б показана эпюра вертикального напряжения при К1 = , К2 = 0.9, К3 = Причем, К2 разбит еще на 10 подуровней (количество подуровней может изменяться по желанию пользователя). На Рис. 5-в показана эпюра вертикального напряжения при К1 = 0.1, К2 = 0.6, К3 = 0.3.

По результатам вычисления осадок предоставляется возможность вычисления их разностей между существующими и проектируемыми фундаментами. Определяются также перекосы фундаментов существующих зданий, возникающие от проектируемых сооружений (Рис. 6). Перекосы вычисляются между парами точек, заданных пользователем.

Рис.6. Таблицы осадок и перекосов

Система ГРУНТ входит в состав таких программных комплексов как ЭСПРИ 2013, ЛИРА-САПР и МОНОМАХ-САПР.

ВЫВОДЫ. Система ГРУНТ позволяет производить экспертную оценку осадок, кренов и перекосов сооружений, как на естественном, так и на свайном основании и оценивать влияние проектируемых новых зданий на существующую окружающую застройку.

Новые возможности системы ГРУНТ для определения параметров жесткости грунтового и свайного оснований Открыть

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Несущая способность буронабивной сваи – таблица характеристик грунта

Как видно из этих формул, многое зависит от сопротивления грунта.

Буронабивные фундаменты устраивают на осадочных породах – песках, глинах и т. д. Приведем значения сопротивлений для разных пород.

Сопротивление по основанию:

глины – от 24 тонны на метр квадратный (мягкопластичные сильнопористые) до 90 (твердые малопористые);суглинки – от 21 до 47;супеси – от 33 до 47;пески пылеватые среднеплотные – от 20 (влажные) до 30 (маловлажные);пылеватые плотные – 30-40;мелкозернистые – 25-30 и 37-45 соответственно;средние – 40 и 55;крупнозернистые – 50 и 70;гравий – 45-75 (в зависимости от минерального состава);щебень с песком – 90.

Боковое сопротивление зависит от глубины залегания слоя. Например, для глин на глубине полметра оно варьируется от 2,8 (твердые глины) до 3 (мягкие), а на глубине 3 метра – 0,8-4,8.

По желанию заказчика мы полностью выполним все работы под ключ, начиная с геологических исследований и заканчивая устройством ростверка.

Выбираем оптимальную длину

При проектировании свайных фундаментов важно помнить, что длина несущих элементов должна быть достаточно большой, чтобы достичь глубины промерзания грунта и коснуться твердых слоев грунта. Если есть недостаток в конструкции, то возможно, что определенный угол дома обрушится, а затем и вовсе рухнет

По этой причине длина конструкции выбирается с учетом нескольких важных факторов

Плотность грунта

Таблица плотности грунта для расчета свайного фундамента

Если грунт рыхлый и не выдерживает больших нагрузок, то сваи опускают на глубину промерзания или на твердый грунт. На строительной площадке необходимо провести подробную геодезическую съемку и собрать данные о почве и уровне грунтовых вод. Это делается с помощью погружного бурения или вручную с помощью лопаты.

При наличии прочных грунтов, таких как глина или песок, следует использовать сваи длиной до 2,5 метров. Если под слоем плодородной почвы находятся породы низкой плотности, то шнеком для садоводства бурится отверстие до уровня слоев твердых пород и на глубине отверстия рассчитывается длина несущих элементов.

Перепад высот на участке

Пример расчета высоты свайного фундамента с перепадом высот на участке

Как правило, при устройстве таких фундаментов редко требуется выравнивание грунта в единую плоскость из-за больших финансовых затрат.

Затем сверлятся отверстия в самой низкой точке будущего фундамента и в самой высокой точке, и рассчитывается длина отверстий для обоих мест. Известно, что уровень твердой породы не всегда будет одинаковым на разных высотах, поэтому бурение производится в нескольких местах.

В результате получается полный проект для выбора оптимальной длины фундамента для дома с учетом типа почвы и высот на участке. В таких случаях не следует устанавливать сваи одинаковой длины, иначе будет наблюдаться тенденция к снижению сопротивления грунта.

Пример расчета сваи по формуле 2

По формуле (1) можно определить диаметр свай и их количество, если известен общий вес, Р строения. Можно определить вес, Р сооружения, которые выдержат сваи, то есть решить обратную задачу.

Решим прямую задачу. Примерный вес строения можно определить, если известна этажность, материалы стен и перекрытий, вес кровли.

Площадь грунта, на которую опирается основание сваи, определим через ее диаметр d:

a периметр сваи равен

подставив (4) и (5) в (2), после элементарных преобразований получим:

Пусть глубина погружения сваи равна 3 м и при этом верхний глинистый слой имеет толщину1,5 м, и нижний слой составляет крупный песок. Пусть коэффициент пористости е≤0,55, и в верхнем слое глина находится в мягкопластичном состоянии, то есть показатель текучести IL=0,6.

По таблице 1 определяем расчетное сопротивление глинистых грунтов, fгл=25(2,5)кПа (тс/м 2 ) и по таблице 2 расчетное сопротивление песчаных грунтов, fпес=85(8,5) кПа (тс/м 2 ). По таблице 4 определяем расчетное сопротивление песчаного слоя Rпес=4100(410) кПа (тс/м 2 ). Подставим эти значения в тс/м 2 в формулу (6).

Fd=π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= = π(410d 2 /4+16,5d).

При диаметре d = 30 см=0,3 м, Fd=44,5 т.

При диаметре d = 20 см, Fd= 23т.

Требуемое количество свай N необходимо определять, проверяя условие:

где Р – вес сооружения.

Понятно, что одновременно с решением прямой задачи можно выполнить расчет размера свай.

Для свай, имеющих в сечении квадратную форму со стороной а, формулу (6) необходимо преобразовать, и она примет вид:

Подводя итог, следует отметить, что выполнен, пожалуй, самый простой расчет. И цель его состояла в определении приблизительного количества свай. Намного сложнее выполнить расчет на воздействие сил морозного пучения. А его также необходимо выполнять. Для такого расчета потребуется определять удельную касательную силу морозного пучения, но это можно выполнить только опытным путем. Поскольку фундамент требует серьезного к себе отношения, то целесообразно воспользоваться услугами специалиста.

Расчёт несущей способности фундамента

Определение несущей способности оснований осуществляется на основе проектной площади опирания фундамента на грунт, сопротивления почвы и испытываемых фундаментом нагрузок, однако особенности и порядок расчетов для разных видов фундаментов будет отличаться.

Ленточного железобетонного

Определение несущей способности ленточного фундамента осуществляется через расчет фактической опорной площади, которой должна обладать фундаментная лента. Делается это по формуле: S>Yn*F/Yc*Ro, в которой:

  • S – опорная площадь фундамента (см2);
  • F – совокупная нагрузка на фундамент дома;
  • Yn – коэф. надежности (1.2);
  • Yc – коэф. работы фундамента в грунте;
  • Ro – расчетное сопротивление грунта.

Величина Yc представлена в нижеприведенной таблице:

Рис 1.7: Коэффициенты надежности при работе ленточных фундаментов в грунте

Для примера произведем расчет фундамента по несущей способности под кирпичный дом

7*7 м (длина ленты с учетом внутренней стены – 35 м)., совокупные нагрузки от которого составляют 190 тонн. Здание возведено на суглинистой почве с сопротивлением 3.6 кг/см2

S>1.2*190 000/1*3.6 = 63 333 см2 = 6,33 м3;

Исходя из расчетов мы получаем, что фундамент, несущей способности, которого будет достаточно под вышеуказанное здание, должен обладать опорной площадью в 6,33 м2. Если учитывать периметр фундамента в 35 м., ширина ленты должна составлять как минимум: 6,33/35 = 0,18 м. Исходя из сопротивления грунта, несущая способность такого ленточного фундамента составит: 63 333 * 3,6 = 227,99 тонн.

На винтовых сваях

Расчет несущей способности фундамента на винтовых сваях выполняется на основе определения несущих характеристик одной сваи и умножения полученного результата на количество свай в фундаменте. Для примера произведем расчеты с аналогичными исходными данными – нагрузки от здания 190 тонн, периметр стен – 35м, грунт – суглинок к сопротивлением 3,6 см/м2. В фундаменте будут использоваться винтовые сваи с диаметром ствола 133 мм.

Рис

1.8: Схема работы винтовых свай в грунте

Важно: минимальный шаг винтовых свай в фундаменте составляет 2 метра, при этом опоры должны обязательно размещаться в местах пересечения стен дома. Исходя из чего, максимально возможное количество свай в фундаменте под дом 7*7 м

может составлять 14 шт.

  • Определяем опорную площадь одной сваи 133 мм., диаметр лопастей у которой составляет 30 см, по формуле “R2*3.14” – 15*15*3,14 = 706.5 см2;
  • Рассчитываем несущую способность сваи по силе сопротивления суглинка: 706,5*3,6 = 2.55 тонн;
  • Расчитываем общую несущую способность фундамента: 14*2,55 = 35,7 тонн.

Как вы видите, несущей способности винтовых свай не достаточно для возведения тяжелого кирпичного здания, нагрузка от которого составляет 190 тонн. На таких фундаментах могут возводиться лишь легкие здания из каркасных панелей либо дерева.

На железобетонных сваях

Железобетонные сваи, в отличие от винтовых, работаю в грунте не только своей опорной подошвой, но и боковыми стенками ствола, поэтому они обладают большей несущей способностью.

Рис. 1.9: Схема фундамента на железобетонных сваях

Расчет основания из ЖБ свай производится по формуле: P = 10Rh*F+u*l*f>P, где

  • Rh – сопротивление почвы под острием сваи;
  • F – поперечное сечение сваи (м2);
  • u – периметр поперечного сечения (м);
  • l – глубина погружения сваи;
  • f – сопротивление грунта боковым стенкам сваи.

Для примера произведем расчет несущей способности фундамента под вышеуказанный дом, состоящего из 14 ЖБ свай сечением 30*30 см, погруженных на глубину 9 м. В первую очередь определяется сопротивление грунта под острием сваи, на глубине 9 м. с учетом характеристик суглинистой почвы:

Далее рассчитывается сопротивление грунта боковым стенкам ствола:

Определяем несущую способность сваи по приведенной в начале главы формуле:

Важно: расчеты свидетельствуют,  что одна железобетонная свая сечением 30*30 см, погруженная на глубину 9 м., может выдерживать нагрузку в 24.1 тонн. Учитывая количество свай в фундаменте (14) мы можем определить общую несущую способность основания: 14*24,1 = 337,4 тонн.

Пример расчета

Предлагаем рассмотреть пример расчета ростверкового фундамента на основе свай. Хотя в интернете есть множество подобных расчетов, если вы не имеете достаточного опыта в этом вопросе, то будет крайне сложно со всем разобраться. Хотя и так, лучше обращаться к профильным специалистам, но для общего понимания стоит узнать важные детали.

Так, учитываются при расчетах следующие данные:

Масса постройки. Чтобы получить конкретную и точную сумму массы, то необходимо сложить массу каждого элемента строения, а, в частности: стены, стяжка пола, стропильная система, кровля, перекрытия и прочее. Для определения этой суммы необходимо использовать средний показатель конкретного строительного материала.

Рис: Вес конструктивных элементов здания

Полезная нагрузка. В этом случае учитывается вся создаваемая нагрузка от мебели, отделки стен, бытовых приспособлений, количество проживающих человек и тому подобное. Согласно установленным нормам, на 1 м2 приходится нагрузки до 100 кг на перекрытие.

Совет эксперта! Определение полезной нагрузки происходит путем умножения площади перекрытия на 100 кг.

Снеговая нагрузка. Для этого используются данные и нормативы для конкретного региона страны. Полученную сумму необходимо умножить на площадь всей крыши.

Рис: Карта снеговых нагрузок РФ

  • Вся нагрузка на фундамент строения. В этом случае следует сложить всю массу будущего строения, нагрузку от снега в вашем регионе и полезную нагрузку. Полученный результат умножается на коэффициент надежности 1,2 (для жилого дома).
  • Грузонесущая способность ЖБИ свай. Подобные расчеты выполняются согласно следующей формуле на основании геологических изысканий:
  • Сколько будет опор и какая их длина. Для этого необходима информация обо всей предполагаемой нагрузке на будущее основание. Что касается длины, то она вычисляется, отталкиваясь от характера почвы. Всегда к полученному результату следует добавить 400 мм по длине.
  • Это позволит выполнить сопряжение ростверка со сваями. Что касается шага между опорами, то преимущественно шаг колеблется от 2 до 2,5 метров. Свая всегда устанавливается по углам и в местах соединения стен.

Рис: Схема заглубления ЖБ свай

Расчет ростверка. Итак, все расчеты выполняются согласно предоставленным формулам.

Совет эксперта! Помните, самостоятельно делать такие расчеты не рекомендуется, необходимо обращаться исключительно к профильным специалистам, которые имеют опыт в этом вопросе.

В большинстве случаев ростверк имеет сечение 400×300 мм. Для изготовления бетона используется цемент М200 и 300. Для армирования применяются прутья А2 и 1 Ø10-15 мм.

В нашей компании работает команда высококвалифицированных специалистов, которые обладают достаточным опытом по разработке свайного фундамента с ростверком. При этом учитываются все ГОСТы и СНиПы. За счет этого достигается высочайшее качество и надежность построенного строения.

Подведем итоги

Когда строится здание с буронабивным свайным основанием, расстояние от одной опоры до следующей принимается из условий:

  • Не меньше 1 м;
  • От 3 до 6 диаметров сваи;
  • На основании расчета. Нормы относятся к требованиям, а не к рекомендациям;
  • Для нужного значения можно изменить в расчете параметры бетонного столба -площадь основания или боковой поверхности (глубину прохождения грунта);
  • Результат практических исследований отличается от табличных данных;
  • Застройщик, имеющий опыт работы на этом участке, сокращает затраты на подготовительные исследования и минимизирует вероятность просчета.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий