Несущая способность грунта под фундаментом: понятие, исследование, определение, расчет

Как рассчитать самостоятельно для дома?

Возведение свайно-винтового фундамента на болоте

Обводненность и переслой

Расчетный срок эксплуатации жилых построек не может быть менее 40 лет. С другой стороны, домом по земле не лупят и на угол его не ставят. Хрестоматийный в сопромате пример: тягач с нагруженным 40-футовым контейнером на прицепе создает удельное давление на опорную поверхность прим. в 3 раза большее, чем танк. Грациозная девушка на каблуках-шпильках – прим. в 10 раз большее. Девушка на шпильках пройдет по утоптанной земле, и никому в голову не взбредет облагать милых дам налогом на пешее хождение, разве что законченному параноику. Впрочем, адепты трансгендерного спорта, возможно, и сюда доберутся, денежки же. Но это к слову. С фур берут дорожный налог за усиленный износ покрытия, а танкам на трассу в мирное время нельзя и кончик пушки высовывать, потому как известно, во что они превратят дорогу.

К чему это? К тому, что в строительстве важна устойчивость грунта, т.е. стабильность его R в долгосрочной перспективе. Абсолютно устойчивы только скальные монолиты в сейсмически безопасных регионах. А устойчивость обычных под постройками грунтов определяется, во-первых, их гранулометрическим составом (см. далее) и степенью обводненности. R насыщенного влагой грунта падает в разы. Поэтому самостоятельные геологические изыскания на месте (также см. далее) нужно производить где-то в середине весны, или, в бесснежных местах, спустя 1-2 недели после годового пика осадков.

В то же время исследуется и стратиграфия грунта, т.е. характер его расслоения. Совершенно однородных грунтов не бывает. Ставить фундамент на первый от поверхности несущий слой не всегда возможно, т.к. он может располагаться выше НГП, а следующий в глубину слой надежного грунта может оказаться слишком тонким. Под фундаментом всегда образуется «земляная пятка», что-то вроде невидимого валика необратимо уплотненного грунта, неразрывно связанного с пятой фундамента. Если мощности (толщины) несущего слоя не хватит на «земляную пятку», основание постройки в этом месте просядет, и пойдет(пойдут) те самые аварийные трещины. Если же УГВ достигнет несущего слоя, то со временем фундамент будет подмыт.

Необходимая мощность несущего слоя определяется шириной фундаментной ленты. Но она, в свою очередь, рассчитывается по несущей способности грунта, весовой нагрузке от здания и параметрам прочности его конструкции. Поэтому точный расчет общей несущей способности данного слоя грунта требует основательных специальных познаний, сложен и трудоемок. Если у вас нет возможности «заказать геологию» для стройки, то по результатам самостоятельных изысканий нужно выбирать несущий слой, для которого соблюдаются условия (см. рис.) D>(3-5)B для временных/сезонных построек и D>(5-7)B для капитальных; T > 1,25B. УГВ при этом не должен подходить к нижнему горизонту (краю) несущего слоя ближе 0,6 м.

Устойчивость фундамента здания в зависимости от стратиграфии грунта

Что включает в себя расчет фундамента

Виды фундаментов

Проектировщик собирает нагрузки с наземного строения и подбирает конструкцию основания. Подземная часть здания работает совместно с грунтом, поэтому характеристики почвы также учитываются, например, ее возможность выдерживать предельные усилия.

Расчет фундамента состоит из таких частей:

  • расчет по сопротивлению нагрузкам (несущая способность);
  • расчет по деформации почвы.

Проектирование проходит отдельной фазой или в составе проекта «под ключ». Используются следующие конструкции фундаментов:

  • ленточная (монолитная или сборная железобетонная);
  • столбчатая с балками или без;
  • свайная;
  • плитный;
  • другие виды.

До начала расчета у конструктора должны быть строительные условия возведения, геодезические и инженерные характеристики объектной площадки, климатические показатели в районе. Специалист работает с архитектурными чертежами и детальными разрезами узлов, использует сведения о технологических и конструктивных особенностях строения.

Конструктор приводит перечень нагрузок, воспринимаемых фундаментом, и в письменной форме предлагает варианты при выборе его типа. В составе проекта прилагаются общие и деталировочные чертежи с описанием основания, отметками заглубления, габаритными размерами. Приводится спецификация материалов, расчет бетона на фундамент, требования к арматуре и проект опоры. а теперь разберёмся с вопросом как рассчитать фундамент под дом.

Расчет по несущей способности грунта

В процессе рассчитывается ширина, высота, давление на подошву и другие критерии. Основание считается надежным, если произведение нижней площади на несущую способность будет больше, чем нагрузки от веса здания.

Формула S · H > P, где:

  • S — площадь подошвы, м²;
  • H — несущая способность, кг/м²;
  • P — масса строения со всеми нагрузками, кг.

Расчет фундамента для дома ведется по следующей методике:

  •    определяется показатель сопротивления грунта нагрузкам;
  •    высчитывается общий вес строения;
  •    находится величина давления на почву;
  •    сравнивается нагрузка и несущая способность земли, вносятся исправления в размерные параметры.

Снеговую массу на кровле можно высчитать по удельному весу покрова. Например, в средней полосе показатель составляет 100 кг/м². Если в здании есть нестандартный объект, например, бассейн, его вес прибавляется к общей массе.

Вес людей для загородного дома, квартиры в городе и коттеджа считается по формуле  Рл. = 400 кг/м² · Sп., где:

  • Рл. — вес людей, кг;
  • Sп. — площадь дома, м².

В результате вычисления выбирается правильное равновесие показателей для обеспечения устойчивости и прочности дома. Расчет исключает сдвиг подошвы и опрокидывание конструкции.

Расчет на деформацию грунта

При расчете учитывается проектное сопротивление почвы на уровне размещения фундаментной подошвы. При заглублении на 1,5 метра и ниже показатель берется из таблиц.

Некоторые значения:

  • гравий с песчаным или глинисто-пылеватым заполнителем — 4 — 5 кг/см²;
  • щебень с аналогичным наполнителем — 4,5 – 6 кг/см²;
  • крупные и средние пески средней и высокой плотности — 2,5 – 4,5 кг/см²;
  • пылеватые и мелкие пески маловлажные и влажные — 1,5 – 2 кг/см².
  • супеси (пористость 0,3 – 0,7) — 2 – 4 кг/см²;
  • суглинки — 1 – 4 кг/см²;
  • глины — 1 – 9 кг/см².

Если фундамент углубляется меньше 1,5 м, плотность под нижней границей будет отличаться. Для расчета применяется формула R = 0.005 · Ro · (100 + h / 3), где:

  • Rо — значение из таблицы для глубины 1,5 м;
  • H — расчетная глубина.

Деформации опор строений бывают осадочными и просадочными. Первый вид включает понятия: полное, среднее или дополнительное оседание под нагрузкой, что определяется количеством измененных участков. Дополнительные деформации бывают от увлажнения дождем и талым снегом, при неправильно выполненной отмостке вокруг дома. Основания осаждаются из-за динамического действия оборудования, протечек канализации, водопровода.

Как определить несущую способность грунта?

Схема развития деформаций и перемещений грунта.

Расчет оснований по несущей способности можно выполнить, определив тип грунта. Глину от песка визуально отличить так же легко, как и крупный песок от мелкого, высокую плотность от низкой. Даже если расчет оснований по несущей способности требуется проводить с учетом влажности, то определить влажность почвы не составит труда. На участке делаются скважины, по которым и определяется уровень глубины грунтовых вод. Если влаги не выделяется, то расчет оснований по несущей способности можно выполнять с учетом того, что почва сухая. Если вода скапливается в проделанных углублениях, то надо определить, в каком количестве

Это особенно важно для глинистых, песчаных грунтов. Если влажность высокая, то рекомендуется установка свай

Надо обращать внимание и на то, какая глубина заложения свай или ленточного фундамента планируется. Чтобы быстро и качественно выполнить такой расчет, надо пользоваться не только табличными данными, но и формулами. Расчет требует использования показателя R, которое показывает несущую способность для определения данных по фундаменту с шириной в 1 м, при глубине заложения в 2 м

Расчет производится при помощи следующей формулы:

Расчет требует использования показателя R, которое показывает несущую способность для определения данных по фундаменту с шириной в 1 м, при глубине заложения в 2 м. Расчет производится при помощи следующей формулы:

  • R = R * [1 + k1*(b – 100)/100] * (d +200)/2*200, при условии определения, что глубина заложения будет составлять до 2 м;
  • R = R * [1 + k1 *(b – 100)/100] + k2*g*(d – 200), при условии определения, что для фундамента глубина заложения принимается больше 2 м.

Расчет выполняется с учетом таких данных:

Таблица значений несущей способности свай.

  1. k1 – это коэффициент, расчет которого проводить не надо, данные берутся из специальной таблицы. Например, значение в 0,125 применяется для песчаных и крупнообломочных. Для пылеватых, глинистых, для суглинка, супеси расчет проводится с подстановкой коэффициента в 0,5;
  2. k2 – это коэффициент, который используется для определения несущей способности песчаных и крупнообломочных почв;
  3. g – это коэффициент, который используется для определения удельного веса грунта, находящегося от подошвы основания и выше (используется для свай, лент, плит и прочего);
  4. b – ширина основания (для свай используется значение круглого либо квадратного сечения, тут применяется формула b=√а;
  5. d – глубина фундамента, тут значение зависит от того, какая группа фундаментов применяется, от условий строительства, будущих нагрузок и прочего. Методы расчета этого значения самые разнообразные, факторов, которые оказывают влияние на получение значения, много.

Методы подсчетов разные, лучше всего за помощью обращаться к специалистам. Если на участке уже стоят дома, которые были построены несколько лет назад и целостность их конструкции находится в отличном состоянии, то формулы используются в том виде, как они даны. Но если строений в округе нет, а состояние почвы вызывает сомнения, то лучше всего не полагаться на приближенные вычисления, а сразу заказать исследования. Это позволит обеспечить надежность и безопасность будущего дома.

Решение

Эксцентриситет приложения нагрузки:

e = M/Fv = 60/260 = 0,23 м.

Приведенная ширина фундамента по формуле:

b’ = b — 2eb = 1,8 — 2× 0,23 = 1,34 м.

Приведенная длина фундамента по формуле: l’ = l = 0,9 м.

Отношение приведенной длины фундамента к его проведенной ширине:

η = l’/ b’ = 0,9 / 1,34 = 0,67.

при η < 1 для расчета коэффициент принимается η = 1.

Коэффициент ξγ по формуле: ξγ = 1 — 0,25/η = 1 — 0,25/1,0 = 0,75.

Коэффициент ξq по формуле: ξq = 1 + 1,5/η = 1 + 1,5/1,0 = 2,5.

Коэффициент ξc по формуле: ξc = 1 + 0,3/η = 1 + 0,3/1,0 = 1,3.

Проверка условия: tg δ < sim φ1; 0,27 < 0,34 — условие выполнено, следовательно, возможно вести дальнейший расчет по формуле.

Коэффициент Nγ = 0,82.

Коэффициент Nq = 3,64.

Коэффициент Nc = 7,26.

Расчет

Расчет несущей способности — это основная цель геологических изысканий. Выполнять его можно только после определения типа пород внутри скважин и получения чертежей геологических разрезов на территории строительной площадки.

Чертеж поможет определить положение слоев пород в толще земли и даст представление о возможности строительства на площадке.

Несущая способность (R) определяется по формуле согласно алгоритму:

  1. Значение R0 (сопротивление осевому сжатию) определяется с помощью таблицы и напрямую зависит от типа грунта;
  2. Рассчитывается глубина промерзания. Это значение индивидуально для каждого региона. Будет зависеть от типа пород в верхних слоях;
  3. Выбирается оптимальная глубина заложения в толще одного из прочных слоев непучинистого грунта, ниже глубины промерзания;
  4. Выполняется расчет по формулам: R=R0*[1+k1*(b-100)/100]*(d+200)/2*200 — при принятой глубине заложения до 2 м и R=R0*[1+k1*(b-100)/100]+k2*g*(d-200) — когда глубина заложения превышает 2 м.

Данные для расчета:

  • k1 — коэффициент берется из таблицы в зависимости от вида породы. 0,125 для устойчивых крупнообломочных или песчаных и 0,5 для глин, супеси и суглинков;
  • k2 — применяется для расчетов несущей способности устойчивых пород (слежавшиеся крупнообломочные или песчаные породы);
  • g — необходим для нахождения удельного веса грунта от подошвы слоя и до нижней части фундамента или следующего слоя;
  • b — ширина, опирающейся на основание части фундамента;
  • d — глубина заложения.

После нахождения фактической несущей способности ее сравнивают с требуемой. Если вторая будет больше первой, то придется менять конструкцию будущего дома (увеличивать площадь опирания фундамента на основание или глубину заложения, менять вид фундамента, выбирать в качестве основания другой, более прочный слой).

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств.

Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

Последние две характеристики грунта определяются только для глинистых грунтов.

https://youtube.com/watch?v=YKegj_DAwnE%3Fautohide%3D2%26autoplay%3D0%26mute%3D0%26controls%3D1%26fs%3D1%26loop%3D0%26modestbranding%3D0%26rel%3D1%26showinfo%3D1%26theme%3Ddark%26wmode%3D%26playsinline%3D0

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Как определить тип грунта самостоятельно?

https://youtube.com/watch?v=fXH0X-nNtkw%3Fautohide%3D2%26autoplay%3D0%26mute%3D0%26controls%3D1%26fs%3D1%26loop%3D0%26modestbranding%3D0%26rel%3D1%26showinfo%3D1%26theme%3Ddark%26wmode%3D%26playsinline%3D0

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

Для определения несущей способности глинистых грунтов, нам необходимо получить еще два коэффициента – показатель текучести грунта (IL) и коэффициент пористости (е). Первый показатель можно достаточно легко определить на глаз, если почва откровенно сырая и вязкая – выбирайте IL = 1, если сухая и грубая – IL = 0. Второй коэффициент можно получить только в таблицах из СНиП. Так как все данные находятся в открытом доступе, для вашего удобства мы скопировали таблицы расчетного сопротивления грунта из СП 22.13330.2011.

Несущая способность глинистых грунтов

Вставьте значение коэффициент пористости е в калькулятор, введите параметры фундамента и закончите определение расчетного сопротивления грунта.

А что это такое?

Да эта самая несущая способность. Общее определение – способность чего-то (элемента конструкции, естественного основания и т.п.) заданное время нести эксплуатационную нагрузку, не испытывая чрезмерных или необратимых деформаций. Но в строительном аспекте дело сложнее, поскольку фундамент механически накрепко связан с грунтом под ним и сам сопротивляется деформациям. А конструкция здания на фундаменте также может быть достаточно прочной и жесткой. Поэтому в строительстве принято определение несущей способности грунта под постройкой через расчетную силу его сопротивления весовой нагрузке R. Грунт под основанием постройки считается надежным, если в течение ее расчетного срока службы здание/сооружение не испытывает опасных смещений (вверх-вглубь, вбок, крена) и деформаций. Выполнение этих условий возможно, если осадка фундамента происходит по линейному закону, а нарушение исходной структуры грунта под весом постройки распространяется в стороны от ее фундамента не более чем на 1,25 его ширины.

Аварийные трещины в зданиях, вызванные слабым грунтом под фундаментом

Риски ошибок в исследовании несущей способности грунта


Появляется опасность сдвига почвы в результате неточного расчёта глубины заложения и габаритов фундамента. Здание весит тонны, на грунт оказывается сильное давление, поэтому к расчетам привлекают строительных инженеров и техников, чтобы в будущем исключить проблемы с деформацией.

Неправильное нахождение несущей способности почвы влечет неприятности в виде:

  • ошибочного подсчета диаметра сваи, площади подошвы ленточного монолита, бетонной плиты;
  • установки опоры в неплотные грунты, просадки строения;
  • неправильного выбора отметки заглубления, выталкивания фундамента вспучивающимися грунтами.

В расчете применяют много коэффициентов, которые нужно точно определить в таблице, иначе фундамент будет запроектирован с ошибками, которые легко править на бумаге, но трудно устранить после возведения стен и кровли. Шатается коробка дома, прогибаются полы в результате чрезмерных усадок после неправильно установленных свай. В здании идут трещины по углам, перекашиваются оконные и дверные коробки в проемах, если сдвинется ленточный фундамент.

От чего зависит несущая способность грунта

Характеристика грузонесущей способности почвы зависит от 3-ех параметров:

  • Типа почвы;
  • Плотности (коэфф. пористости);
  • УГВ (уровня грунтовых вод).

Важно: в практических условиях, наиболее важным фактором является УГВ, от которого непосредственно зависит влажность грунта и его плотность. Один и тот же тип почвы, в сухом и влажном состоянии, может иметь грузонесущую способность отличающуюся в 2 и более раз

Плотность почвы наряду с грузонесущей способностью определяет деформационную устойчивость грунта. Низкоплотные породы почвы имеют пористую структуру, в которой свободное пространство между фракциями заполнено воздухом либо водой. Если нагрузки на низкоплотный грунт превысят допустимую норму, произойдет уплотнение грунта — усадка, которая чревата разрушением и деформацией находящихся в почве фундаментов.

Рис: Классификация распространенных в России типов почвы

От плотности почвы зависит степень сжимаемости грунта. На любом участке поверхностный пласт почвы, в большинстве случаев, представлен низкоплотными породами (за исключение регионов с крупнообломочным и скалистым рельефом), а на глубине 5-6 метров располагаются пласты высокоплотного, несжимаемого грунта, способного выдерживать тяжелые габаритные здание. Именно поэтому на участках с проблемными грунтовыми условиями рекомендуется использовать свайные фундаменты, которые переносят исходящую от дома нагрузку на глубинный, несжимаемый пласт грунта, обладающий

Типы грунтовых пород

Главным нормативным документом, в котором обозначены характеристики грунтов, их типы и классификация, является ГОСТ 25100-2011.

Нужно отметить, что важнейшим свойством таких пластов является способность менять свои физические свойства исходя из условий внешней среды. Температура, плотность, уровень влажности, неоднородность – все это напрямую влияет на грунт, меняя его характеристики, что обязательно учитывается при просчете.

При анализе грунта под фундамент здания чаще всего применяют классификацию по строению и составу, что позволяет выявить требуемые свойства.

Скальные

К ним относят сланцы, кварциты, диориты, граниты, конгломераты, гнейсы и песчаники.

Они отлично справляются с нагрузкой на сжатие, сохраняя свою прочность и структуру даже во влагонасыщенном состоянии.

Главная сложность – это разработка, однако во многих случаях дом можно строить на нем без необходимости в заглублении.

Крупнообломочные

Грунты несцементированного типа, которые содержат в своем составе свыше 50% осадочных и кристаллических пород, включая валуны, гравий (дресва) и щебень, фракцией от 3 до 40 мм.

Они представляют собой хорошее и крепкое основание, хотя и являются сложными в плане разработки, требующие использования специального технологического оборудования.

Песчаные

Состоят из крупного, среднего и мелкого песка, зерна которого обладают хорошей пластичностью.

Благодаря хорошей водопроницаемости практически не подвержены пучению, представляя собой хорошее основание для зданий разного типа и этажности. Чем крупнее частицы песка по размеру, тем более плотным он является.

Глинистые

Пластичные грунты, состоящие из смеси песка и глины, частицы которого обладают чешуйчатой формой, высокой капиллярностью и крайне низкой водопроницаемостью.

Вследствие этого такие составы имеют высокую степень пучинистости в зимний период времени, что приводит к риску выталкивания фундамента. С сухом состоянии глинистые отложения твердые и хорошо сохраняющие форму, а во влажном – пластичные и липкие за счет легкого разжижения и увлажнения.

Из-за высокой подвижности плывуны не могут быть использованы в качестве основания при закладке строения.

Лессовидные суглинки – одна из разновидностей грунта с глинистыми примесями.

Характеризуются наличием от 15 до 30% пластичных частиц, при растирании которых визуально видны мелкие песчинки.

Во влажном состоянии суглинки имеют слабую липкость и пластичность; при скатывании в шарик и последующем раздавливании образца на нем образуются глубокие трещины.

Что влияет на несущую способность грунта

Несущие свойства грунта — это один из главных исходных параметров, который необходимо знать при проектировании фундаментов любого типа. Именно от них зависит, сможет ли конкретный участок почвы выдерживать передаваемую на него фундаментом нагрузку, исходящую от массы здания.

Рис. 1.1: Схема работы сваи в плотном слое почвы

Исходя из несущей способности определяется требуемая площадь опирания железобетонной сваи на грунт — чем ниже данная характеристика, тем большего сечения нужно использовать ЖБ сваи.

На величину несущей способности почвы оказывают влияние три основных фактора:

На практике наибольшая взаимосвязь наблюдается между несущими характеристиками и влажностью грунта, которая непосредственно связана с уровнем грунтовых вод. Конкретный грунт, в сухом состоянии и при пропитке влагой, может изменять свои несущие свойства в двукратных пределах.

Совет эксперта! Данная взаимосвязь не свойственна песчаным грунтам крупных и средних фракций, на них увлажнение не оказывает никакого влияния.

Любой грунт, кроме скальных пород, по своей структуре напоминает губку — он состоит из отдельных частиц и пор между ними, пространство которых заполнено влагой либо воздухом. При сильных внешних нагрузках происходит уменьшение объема грунта из-за его механического уплотнения, что приводит к усадкам почвы и, как следствие, деформации стоящих на ней фундаментов.

Рис. 1.2: Внешний вид разных видов грунта

Чем больше изначальная плотность почвы, тем лучшими несущими характеристиками она обладает. Плотные грунты не подвергаются усадкам, при правильном проектировании фундамента они способны выдерживать даже тяжелые многоэтажные здания.

Совет эксперта! Плотность любого грунта растет по мере увеличения глубины его залегания (из-за давления вышерасположенных слоев почвы), строить свайные фундаменты можно даже на территориях с проблемным грунтом с низкими несущими характеристиками, при условии, что подошва сваи будет опираться на глубинный слой почвы, обладающий достаточной плотностью.

Важно! Любые работы с фундаментом должны начинаться с испытания грунтов, подробнее: Испытания грунтов

Что нужно сделать

Чаще всего при частном строительстве используют ленточный фундамент. Такой тип позволяет сделать в доме подвал, но в некоторых случаях он может быть экономически невыгодным. Чтобы составить смету на выполнение работ (или примерно прикинуть, сколько потребуется вложений), нужно выполнить расчет арматуры для ленточного фундамента, также вычислить объем бетона и его геометрические размеры.

Чаще всего в частном строительстве закладывают ленточный фундамент

Методика расчета предполагает вычисление трех величин. Расчет ленточного фундамента в результате должен дать такие сведения о конструкции:

  • глубина заложения подошвы;
  • ширина основания;
  • ширина по всей высоте.

Расчет фундамента для дома из кирпича или других материалов обязательно начинают с определения глубины заложения. Она зависит от пучинистости грунта, уровня грунтовых вод и климата. Если неправильно высчитать эту характеристику, здание может разрушиться под действием сил морозного пучения. Лента будет одновременно подвергаться воздействию влаги и холода, что приведет к неравномерным деформациям и трещинам.

Ширина основания должна быть достаточной для того, чтобы равномерно передать массу здания на грунт. Чем меньше прочность почвы, тем шире потребуется подошва. За счет большой площади удается распределить нагрузку от ленточного фундамента для дома на основание так, что на каждый его участок приходится не больше допустимой величины.

Фундамент должен быть заложен ниже уровня промерзания грунта

Ширина ленты по всей высоте обычно принимается конструктивно. Она должна быть чуть больше наружных стен. При этом учитывают способ изготовления ленты. Для монолитного фундамента может быть достаточно ширины сечения 200—300 мм, в то время как сборный рекомендуют делать не менее 400—600 мм. Также этот показатель зависит о глубины заложения. Чем она больше, тем сильнее будут опрокидывающие воздействия (потребуются более мощные стены подвала).

Исследование грунта

Исследования состояния грунта важный этап в подготовки к монтажу фундамента. Так, лучше всего обратиться к помощи специализированных компании, оказывающих данные услуги на профессиональной основе. Однако, первичные работы можно провести и самостоятельно — воспользовавшись ориентировочным методом исследования и анализа грунта. Рассмотрим поэтапно:

Для извлечение проб грунта необходим бур

Важно помнить, что от этажности будущего здания зависит глубина на которую нужно проделать лунку.
Так, для одноэтажного дома — это 2-3 метра, для двухэтажного дома — 3-4 метров. Однако, если планируется укладка глубокого фундамента для подвала или цокольного этажа, то бурение самостоятельно выполнить не получиться, так как в этом случае глубина будет соответствующая.
Возникает другой вопрос: достаточно ли одного шурфа? Однозначно нет и это объясняется просто

Фундамент будет залегать на достаточной глубине и в разное время года на него будет воздействовать мороз или влага, что в свою очередь может привести к образованию трещин, сколов, дыр как на самом фундаменте, так и на стенах сооружения.
Как бы не было зафиксировано в СниПах о том, что для небольших одноэтажных достаточно 1-2 шурфов, лучше всего заложить 4-5 для надежности.

На первый взгляд нельзя сразу сказать, какие сюрпризы может скрываться в себе грунта на участке, для этого проводится анализ почвы с каждых 30-40 см шурфа до предельной глубины промерзания грунта. Чтобы определить тип почвы, имеющийся на отведенном под застройку участке, вам необходимо пробурить по периметру площадки 3-4 шурфа глубиной на 2 метра и визуально осмотреть извлекаемую из скважины породу.

  • Глинистая почва — имеет желтоватый либо темно-коричневый цвет. При высокой влажности пластична, позволяет слепить шарик, при сдавливании формирующий ровную, без трещин, лепешку. При низкой влажности имеет повышенную твердость, валун из глины сложно раздавить ногой. Сухая глина — оптимальная для строительства фундаментов порода, обладающая высокой грузонесущей способностью, однако строительство на влажной глине чревато проблемами из-за пучения грунта. Несущая способность сухой глины — до 6 кг/см2, влажной — 1-3 кг/см2;
  • Суглинок — почва, имеющая низкую плотность. В составе содержит 30-35% глины и пылеватые (мелкофракционные) пески. Слепленная из суглинка лепешка имеет множество трещин по краям. Суглинок, из-за низкой грузонесущей способности может давать осадку, а наличие в составе пылеватых частиц обуславливает высокую склонность породы к пучению. Несущая способность сухого суглинка — 3 кг/см2, влажного 1-2.5 кг/с2;
  • Супесь — почва, обладающая минимальной пластичностью (песок и 10% глины). Имеет характерный желтоватый либо рыжий цвет, крошится и рассыпается даже во влажном состоянии. Несущая способность сухой супеси — 3 кг/см2, влажной — от 0.7 до 2 кг/см2;
  • Пылеватый песок — мелкофракционные частицы, визуально напоминающие пыль. Фракции менее 0.1 мм в диаметре, грузонесущая способность в сухом виде — 3 кг/см2, влажном — 1 кг/см2;
  • Средний песок — размер фракций 0.1-1 мм, несущая способность сухого песка — 4 кг/см2, влажного — 1 кг/см2;
  • Крупный песок — имеет фракции 0.1-2 мм. в диаметре, размер которых схож с зернами проса. Несущая способность крупного песка не зависит от насыщенности влагой, она всегда составляет 4-5 кг/см2;
  • Гравелистый песок — обломочная порода, содержащая частицы гравия размером до 5 мм. в диаметре. Имеет постоянную грузонесущую способность в 5 кг/см2.

Рис: Разные виды грунта

Стоит понимать, что проектировать фундамент на основе характеристик грунта, определенных кустарным методом, не подпишется ни одна серьезная проектировочная организация, поскольку самостоятельно выявить фактическую плотность грунта, от которой сильно зависит грузонесущая способность породы, невозможно.

Важно: чтобы избежать проблем в дальнейшем, рекомендуется рассчитывать фундамент исходя из усредненной грузонесущей способности любого типа сухой почвы в 2 кг/см2.Может быть интересным:

  1. Стена в грунте, технология
  2. Несущая способность свай

Несколько слов о насыпном грунте

Технология монтажа фундамента

Фундаменты, которые можно отнести к монолитно-бетонным основаниям, существует много. Отличаются они спецификациями, используемыми компонентами и т.д. Среди основных видов особенно востребованы:

Столбчатый фундамент — Устройство фундамента этого варианта основания подразумевает конструкцию из отдельных столбов, связанных между собой ригелями из бетона и заливающихся по краям будущего сооружения. В результате получается отличное основание для небольших построек и малоэтажного строительства из дерева и кирпича. Рабочий процесс в данном случае не требует использования тяжелой и сложной строительной техники;

Ленточный фундамент — основание по своей структуре является полосой из железобетона, углубленной ниже уровня промерзания грунта. Основные параметры устройства такого фундамента, его ширина, тип используемого бетона, структура и высота определяются на стадии проектирования, исходя из веса будущего здания, его структуры и количества этажей. Как правило, такие основания выбираются для возведения каменных частных строений, имеющих в цокольном этаже подвалы или гаражи;

Железобетонная монолитная плита — выбирается в основном на сложных грунтах, на глинистой, торфяной почве или с большой глубиной промерзания. Основное преимущество устройства такого фундамента в том, что плита является сплошным основанием, способным выдерживать большие нагрузки и сохранять целостность строения;

Свайный фундамент — удачно используется на склонах, промерзших, насыпных, слабых грунтах

В данном случае особе внимание необходимо уделять выбору опор и монолитного ростверка;

Свайно-плитное основание – это уникальное изобретение в строительной сфере, используемое в основном для возведения многоэтажных сооружений. Состоит из нескольких важных элементов – ростверков, железобетонных свай, характеризующихся отличной устойчивостью и повышенной прочностью.

Работы по устройству монолитных оснований предполагают применение специализированной строительной техники, так как требуется выемка больших объемов грунта. Помимо этого, армирование осуществляется в несколько слоев по всей площади основания строения. В данном случае потребуется много стальной арматуры, ее необходимо будет предварительно сваривать и обвязывать по специальной технологии.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий