Принцип работы и технические характеристики герконовых датчиков

Плюсы и минусы

Извещатель магнитоконтактный имеет ряд преимуществ по сравнению с иными видами датчиков охранного назначения. Он бюджетный по стоимости, несложен по конструкции безотказен и обычно служит весьма долго. Коммутируемые контакты располагаются в среде, которая состоит из инертных газов, а окружает эту среду герметичная капсула из стекла. Вследствие этого датчик можно устанавливать внутри пространства, где существует угрозы взрыва либо присутствуют химические реактивы. Поверхность контактов состоит из родия или золота, слой которых достаточно велик, чтобы извещатель функционировал безотказно и медленно изнашивался. Диапазон допустимых температур от 50 градусов ниже нуля до 50 градусов выше нуля. Разработчики сделали гальванически развязанными коммутируемые и управляющие цепи.

Минус данного датчика — то, что его контакты издают слышимый дребезжащий звук, это устраняется благодаря наличию фильтров. Магнитные поля значительной силы, находящиеся извне, воздействуют на датчики, избежать их эффекта можно, выполнив экранирование.

Принцип работы геркона

Для того, чтобы вызвать срабатывание контактной группы, необходимо вокруг геркона создать магнитное поле достаточной напряженности

При этом абсолютно не важно, как это поле будет создано, либо просто постоянным магнитом, либо электромагнитом. Силовые линии внешнего магнитного поля намагничивают внутренние контакты – сердечники геркона, в результате чего они преодолевают силы упругости, притягиваются и замыкают электрическую цепь. В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся

Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов

В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся. Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов.

Несколько по-иному действует геркон, работающий на размыкание. Его магнитная система устроена так, что при воздействии магнитного поля контакты – сердечники намагничиваются одноименно, поэтому отталкиваются друг от друга, размыкая электрическую цепь.

У переключающего геркона один из трех контактов, как правило, нормально — замкнутый выполняется из металла немагнитного, а оба нормально – разомкнутых контакта из ферромагнитного, как было сказано чуть выше. Поэтому при воздействии на геркон магнитного поля нормально разомкнутые контакты просто замыкаются, а немагнитный нормально – замкнутый, оставаясь на своем первоначальном месте, размыкается.

Примечание. Нормально – разомкнутый контакт, это который разомкнут при отсутствии управляющего воздействия, в данном случае магнитного поля. Соответственно нормально — замкнутый контакт замкнут при отсутствии магнитного поля.

Конечно, магнитное поле присутствует всегда, например магнитное поле Земли. И нельзя, вроде бы, сказать про отсутствие магнитного поля совсем. Но магнитное поле Земли для срабатывания геркона недостаточно, поэтому им можно пренебречь и сказать об отсутствии магнитного поля, в данном случае внешнего.

История изобретения

Советский ученый Петербургского университета В. И. Коваленко, проводя эксперименты с магнитным полем в 1922 году, создал магнитоуправляемые контакты. Это изобретение было зарегистрировано в Советском Союзе и получило патент под номером 466.

Его изобретение представляло собой сердечник из магнитомягкого материала, к которому через изоляторы крепились контакты, сделанные из ферромагнетика, обладающего высокой магнитной проницаемостью. После подачи тока в катушке возникало магнитное поле, намагничивающее контакты и приводя к их замыканию. Если же подача тока прекращалась, поле исчезало, а контакты размагничивались и размыкались.

На то время изобретение не получило практического применения из-за неудобности его использования и низкой надёжности. В 1936 году конструкция геркона была доработана инженерами американской компании Bell Telephone Laboratories. Ими было предложено рабочие контакты устройства поместить в герметично замкнутую колбу. Занимался этой разработкой Уолтер Эллвуд, который в итоге и создал модель устройства. Но из-за сложностей в изготовлении прибор опять же не получил широкого применения.

Использовать прибор начали лишь только в 1941 году, когда американская компания Western Electric известная своими техническими инновациями вместо шумных электромеханических реле в своей телефонной станции не стала использовать геркон.

В середине 60-х годов XX века в СССР массово проводилась телефонизация страны. На основании выводов Министерства связи СССР было решено, что в качестве коммутирующих элементов будет использоваться геркон. Так, на , расположенном в Ленинграде, началось серийное производство устройств. Через шесть лет магнитоуправляемые герконы стали изготавливать и в Рязани, на металлокерамическом заводе.

В начале 1990 года объём производства в СССР достиг 230 млн штук в год, что соответствовало примерно четверти мирового рынка. Сегодня ОАО «Рязанский завод металлокерамических приборов» остался единственным заводом, выпускающим такую продукцию на территории бывшего Советского Союза. В настоящее время ведутся разработки, направленные на снижение размеров, повышение быстродействия, чувствительности и стабильности герконов.

Нюансы применения герконов


Применение геркона с магнитом

Перед использованием или установкой герконового датчика нужно учитывать:

  • Прибор не совместим с источниками ультразвука, т.к. изменяет электрические параметры.
  • Магнитное поле влияет на особенности выключателя.
  • При ударе инертный газ разбалтывается, баллон может лопнуть.
  • Переключатель не коммутирует большой ток по причине малой мощности сердечника.

Миниатюрный герконовый датчик отличается быстродействием и рассчитан на 4-5 млрд срабатываний. Прибор совместим с нагрузкой низковольтной сети и функционирует без привязки к источнику электроэнергии.

Управление герконом при помощи катушки с постоянным током

Этот способ получил наибольшее распространение при создании герконовых реле. Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп. Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.

Герконы в колбе из зеленого стекла.

Преимущества и недостатки герконов

Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах. По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков МегаОм), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт. Сравнительные характеристики герконов приведены в таблице ниже:

Будет интересно Варисторы – что это такое, принцип действия, характеристики и параметры.

Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000Гц, а скорость срабатывания и отпускания находится в пределах (0,5 – 2,0мс) И (0,2 – 1,0мс) соответственно. Срок службы некоторых герконов доходит до 4 – 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.

Недостатки герконов

На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.

Как подключить геркон.

Управление герконом по средствам катушки, через которую пропускается постоянный ток

Такой способ получил широкое применение в конструкциях герконовых реле с небольшим количеством групп контактов. В полый сердечник корпуса, на который намотана обмотка, помещают один или несколько герконов.


Элементы конструкции герконового реле РЭС -24

Примером такого использования являются токовые датчики защиты в электросетях питающих оборудование. Катушки наматываются достаточно толстым проводом, чтобы выдерживать токовые нагрузки, используемые на производственном процессе. При превышении тока магнитное поле отключает контакты геркона, оборудование обесточивается. Настройка осуществляется перемещением по резьбовому соединению геркона внутри катушки вдоль оси.

Достоинства герконовых переключателей

  • В отличие от обычных реле с электромагнитными катушками и сердечником в герконовых нет механических элементов, привода рычага для перемещения контактов и стального сердечника в катушке. За счет этого конструкция получается меньших габаритов.
  • Многие показатели герконовых реле в сотни раз выше, чем обычных реле, сопротивление изоляции, пробивное напряжение, соответственно электрическая прочность.
  • Очевидно, что обычные реле не могут сравниться с герконами по быстродействию. Частота коммутации контактов на герконах 1000Гц;
  • Ресурс работы герконов исчисляется в миллиардах циклах переключений;

Конструкция, виды и принцип действия

Устройство герконового реле отличается простотой. В основе элемента лежит электромагнитная катушка, поверх которой расположен защитный экран, защищающий контактную группу от влаги, окисления, пыли и магнитных полей. В герметичном стеклянном трубчатом корпусе, в вакуумной или аргоновой среде, находятся два гибких ферромагнитных проводника с плоскими металлическими контактами из пермаллоя, покрытого драгоценными металлами с высокой проводимостью (серебро и металлы платиновой группы). Детали производятся методом штамповки, а соединения осуществляются при помощи сварки или пайки. Вся конструкция при этом может быть помещена в кожух.

Принцип работы герконового реле основывается на взаимодействии сил, возникающих между магнитными телами. Когда контактные сердечники подвергаются воздействию магнитного поля, контакты внутри стеклянного баллона размыкаются или наоборот замыкаются. Зазоры существенно облегчают прохождение поля между элементами прибора. Таким образом, сердечники справляются с функциями токопроводящего элемента, пружины и детали, реагирующей на магнитное поле, источником которого, как правило, служит электрический или постоянный магнит.

Различаются герконы на несколько групп по типу используемого контакта:

  • замыкающий;
  • размыкающий;
  • переключающийся или комбинированный (одна группа срабатывает на размыкание, вторая – на замыкание).

В зависимости от конструктивного исполнения различают сухие (колбочка с инертным газом или вакуумом) и смоченные (наличие ртути на месте соприкосновения сердечников) разновидности. Капля ртути позволяет устранить дребезжание ферромагнитных сердечников.

Работа герконового реле во многом зависит от материалов, из которых оно изготавливается. При производстве герконовых реле используется четыре группы магнитов:

  • неодимовые – отличаются наибольшей коэрцитивной силой и остаточной намагниченностью, но плохо переносят эксплуатацию в средах с повышенным содержанием кислорода;
  • ферритовые – очень стойкие к коррозии и самые доступные, но вместе с тем хрупкие магниты;
  • самариевые – обладают отличной термической стабильностью и стойкостью к размагничиванию, но отличаются высокой ценой и еще большей хрупкостью, чем ферритовые аналоги;
  • изготовленные из сплава альнико (алюминий, никель, кобальт) – имеют лучшую термостойкость и сравнительно доступную цену, но наделены низкой коэрцитивной силой.

Герконовый датчик, принцип работы и схема подключения.

Герконовый датчик — распространён в качестве датчика открывания дверей и окон, для защиты от постороннего проникновения на объекты, в охранных системах. Эти магнитоконтактные датчики устанавливаются на двери, на ворота, на окна и на любые другие массивные конструкции и предметы, которые требуется защитить от нежелательного открывания, перемещения.

READ Как подключить несколько вентиляторов к блоку питания

Геркон (герметичный контакт) является основным элементом такого датчика, и делает его надежным, безопасным, и долговечным, при невысокой стоимости, компонентом охранных систем.

Геркон представляет собой герметично заваренный стеклянный баллон, в который обычно помещены два пермаллоевых контакта, причем среда внутри баллона – азот высокого давления, что исключает окислительные процессы внутри этого важного электронного компонента. Контакты его покрыты специальным металлом, например молибденом, титаном, вольфрамом или золотом. Это придает им долговечность и износостойкость (рабочий ресурс геркона составляет более миллиона срабатываний)

Подробнее про герконы читайте здесь: Геркон, что это такое, как он устроен и работает?

Это придает им долговечность и износостойкость (рабочий ресурс геркона составляет более миллиона срабатываний). Подробнее про герконы читайте здесь: Геркон, что это такое, как он устроен и работает?

По принципу работы герконовый датчик достаточно прост. Он состоит из двух частей: задающей и исполнительной. В качестве задающей части используется постоянный магнит, а в качестве исполнительной – герконовый элемент. Как правило, эти части очень похожи внешне, у них одинаковые корпуса. Часть содержащая магнит размещается обычно на подвижной конструкции, например на двери, а сам датчик, например, на дверном косяке.

Когда дверь закрыта, элементы находятся рядом друг с другом, и магнит, действуя на контакты геркона, удерживает их в замкнутом состоянии. В этом положении типичный режим охраны соблюден. Если дверь в таком режиме открыть, то магнит уже не будет удерживать контакты геркона замкнутыми, и возникнет сигнал тревоги. В технической документации на датчик указано, каким должно быть расстояние между двумя компонентами датчика, чтобы он надежно работал.

Герконовый датчик для открытого монтажа

Встречаются разные типы датчиков для разных условий:

Различия здесь вполне оправданы, поскольку массивная стальная дверь, например, требует установки более мощного магнита, так как часть магнитного поля забирает на себя сталь. К тому же монтажные зазоры при установке должны быть увеличены, это связано с особенностями монтажа самой такой двери.

В то же время, монтаж на деревянную или ПВХ дверь или на окно не требует особых условностей, и датчик для них достаточно прост, он может быть прикручен шурупами или просто приклеен.

Скрытый монтаж, в свою очередь, позволяет вписать оборудование в интерьер, элементы такого датчика вставляются в отверстия, и надежно удерживаются там крепежными защелками для фиксации. Как видно, датчики для скрытого монтажа выглядят иначе, чем датчики для наружного монтажа.

Герконовый датчик для скрытого монтажа

Для защиты от незаконного проникновения посредством попытки обмана датчика внешним магнитом, при установке датчика следует пользоваться простыми защитными мерами, главных из которых две.

Монтаж извещателей охранной сигнализации

Как правило, основные элементы извещателей крепятся к самой поверхности блокируемого компонента, с внутренней стороны помещения подлежащего охране. При этом задающий элемент размещают непосредственно на той части конструкции, которая обладает наибольшей подвижностью (например, дверь), а исполнительный элемент со всеми его проводами или коммутационными приспособлениями закрепляют на ее неподвижной части.

На деревянной поверхности монтаж охранной сигнализации с извещателем можно осуществить с помощью стандартных шурупов или небольших саморезов, а в случае необходимости закрепления устройства на металлической поверхности, его можно прикрепить при помощи винтов и деревянной подкладки, а на стеклянную поверхность просто приклеить специальным клеем. Стоит также отметить, что установка модулей геркона и самого магнита должна производиться на блокируемый элемент исключительно параллельно друг другу. Поскольку нарушение их параллельности может привести к ложным срабатываниям, отказа работоспособности извещателей или к другим нежелательным последствиям.

Датчики поверхностного монтажа применяются для блокировки на открывание или перемещения стальных дверей и закрепляются на металлические поверхности раздвижных конструкций. Они довольно часто устанавливаются на двери больших ангаров, железнодорожных контейнеров или различные люки коммуникационных колодцев, выполненные из разнообразных сплавов металла или чугуна. Такие датчики обладают более крупными размерами, имеют повышенную степень мощности магнита и требуют при установке настройки более широкого зазора между металлической конструкцией и магнитом.

Что же касается датчиков скрытого монтажа, основанных на магнитопассивных конструкциях, то они имеют специфическую форму, внешне напоминающую небольшой цилиндр с выступающими краями и ребрами жесткости. Такая структура устройства позволяет не заметно монтировать его практически в любом помещении, а также повысить его надежность и увеличить удобство при эксплуатации. К тому же, такие датчики напрочь лишены каких-либо излишних проводов или соединительных кабелей, что делает их практически незаметными при установке и не вызывает затруднений с протяжкой кабелей.

Недостатком этих систем, можно посчитать обязательную необходимость сверления отверстий в дверных конструкциях или их металлических основах для размещения в них основных частей механизма.

Герконы: способы управления, примеры использования

Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.

Механические параметры герконов

К механическим параметрам относится магнитодвижущая сила срабатывания. Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп). Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания. Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона.

Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием. Максимальное число срабатываний, или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.

Размеры геркона.

Электрические параметры герконов

Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз. Электрическая прочность геркона. Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.

Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax. Емкость, измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами. Все технические характеристики основных типов герконовых выключателей приведены в таблице ниже:

Таблица стандартных технических характеристик герконов.

Достоинства герконовых реле:

  1. Полная герметизация контакта позволяет их использовать герконовые реле в различных условиях влажности, запыленности и т. д.
  2. Высокое быстродействие, что позволяет использовать герконовые реле при высокой частоте коммутаций.
  3. Гальваническая развязка коммутируемых цепей и цепей управления герконовых реле.6. Расширенные функциональные области применения герконовых реле.
  4. Надежная работа в широком диапазоне температур

Будет интересно Что такое катушка индуктивности и почему ее иногда называют дроссель

Недостатки герконовых реле:

  1. Восприимчивость к внешним магнитным полям, что требует специальных мер по защите от внешних воздействий.
  2. Хрупкий корпус герконов, чувствительный к ударам.
  3. Малая мощность коммутируемых цепей у герконов.
  4. Возможность самопроизвольного размыкания контактов герконовых реле при больших токах.

Геркон на бумаге.

Принцип действия

Принцип, на котором базируется функционирование извещателя магнитоконтактного — это способность магнита воздействовать на железо и иные магнитные металлы. Если дистанция между магнитом и контактами сокращается до определенной величина, то на них начинает оказывать влияние магнитная сила, в результате чего они либо сходятся, либо расходятся. Какой процесс имеет место, определяется конструкцией извещателя. Если же магнит удаляется на определенное расстояние, то процесс сменяется на противоположный. Контакты помещается внутри колбы из стекла и совмещают свойства магнитопровода, пружины и токопровода. При возрастании дистанции происходит уменьшение энергии магнитного поля в геометрической прогрессии. Поэтому если такое расстояние между герконом и магнитом возрастет, поскольку дверь оказалась чуть открыта, то энергия магнитного поля существенно снизится, в результате чего она не будет в состоянии удерживать контакты вмести, и они разойдутся.

Конструктивные отличия

Многофункциональный геркон представлен в виде герметичного баллона из стекла, внутри которого расположены чувствительные контакты. Эти элементы являются магнитными сердечниками, приваренными с торцовых сторон изделия. Все внешние части подключаются к имеющейся электросети.

Самыми востребованными сегодня считаются герконовые реле на замыкание. Контакты изготовлены из качественной ферромагнитной проволоки прямоугольной формы. Сердечники выпускаются из пермаллоя — материала, где основную роль играет мощность, а также размер геркона. В случае надобности покрытие может быть заменено на серебро, золото, родий.

Готовую колбу вакуумируют или же запускают в неё инертный газ, что предотвращает развитие коррозии в выключателе. В процессе изготовления специалисты также учитывают тот факт, что между сердечниками присутствует зазор определённого диаметра.

Электронная библиотека

Электротехника и промышленная электроника / Магнитные элементы электронных устройств / 4.6. Магнитоуправляемые герметизированные контакты (герконы)

Автоматизированные системы управления в производственных условиях могут подвергаться воздействию агрессивной окружающей среды в виде пыли, газа, повышенной влажности и других факторов, вызывающих коррозию и преждевременный износ. В электромагнитных реле наиболее уязвимым звеном являются контакты. Герметизация контактов повышает надежность работы реле в целом.

Герметизированные магнитоуправляемые контакты (герконы)

нашли широкое применение в безъякорных реле в качестве концевых и путевых выключателей, датчиков положений и перемещений, координатных переключателей, в охранной сигнализации.

Простейший магнитоуправляемый контакт (МУК) представляет собой стеклянную трубочку (колбочку) с впаянными в нее пермаллоевыми пластинками – контактами, между которыми оставлен рабочий зазор. Колбочка заполнена азотом или другим инертным газом для предотвращения электрокоррозии. Под воздействием внешнего магнитного поля между пластинками возникает тяговое усилие и они смыкаются. Соприкасающиеся поверхности контактов покрыты серебром, золотом, родием.

Некоторые модификации герконов показаны на рис. 4.8: а

– симметричные;б – несимметричные замыкающие;в – переключающие;д – ртутный;е – ртутный плунжерного типа. Возможны и другие модификации, в частности, поляризованные. Поляризацию осуществляют путем размещения внутри колбочки тонких пластинок постоянных магнитов. В ртутных МУК (рис. 4.8,д ) ртуть, смачивая пластину, поднимается по ней к контактирующим частям, обеспечивая высокую частоту переключения. Частотой переключения до 800 Гц обладают ртутные МУК плунжерного типа. Пермаллоевый плунжер перемещается под действием электромагнитного усилия к левому или правому контакту в цилиндрической направляющей, наполненной ртутью. На рис. 4.8,г – МУК дифференциального типа. Он имеет две обмотки – правую и левую.

Рис.

4.8. Конструктивное исполнение магнитоуправляемых контактов

Магнитное поле, управляющее контактами, создается током в обмотке, представляющей соленоид, внутри которого размещен МУК, или постоянным магнитом.

По сравнению с обычными реле герконы имеют ряд преимуществ: высокая надежность коммутации в любой среде, длительный срок службы (до 108 – 109 срабаты

ваний), высокое быстродействие, вибрационная и радиационная устойчивость, низкая стоимость, малые габариты и вес.

Не лишены они и недостатков: малое число контактных групп, одна пара контактов в одной колбочке, дребезги при замыкании, большая, чем у обычных реле, намагничивающая сила срабатывания из-за нескольких воздушных промежутков.

Для увеличения числа контактов в одном соленоиде размещают несколько герконов, но недостаток их в том, что срабатывают они неодновременно из-за различия магнитных сопротивлений, т.к. МУК, сработавший первым, шунтирует магнитные пути других МУК.

Одна из разновидностей МУК – ферриды

. ЭтоМУК с памятью . Если МУК снабжен внешним магнитным сердечником с прямоугольной петлей гистерезиса, то при подаче на его обмотку импульса тока МУК срабатывает и остается в таком положении до подачи импульса обратной полярности. Сердечник может располагаться внутри колбочки. Для размыкания контактов нужно подать строго определенный ток обратной полярности. При большом токе сердечник перемагнитится в противоположном направлении и контакты снова замкнутся. Для предотвращения этого ферриды обычно снабжают двумя обмотками: рабочей и поляризующей.

Сейчас выпускаются МУК с внутренним объемом колбочки не более 2,5 мм3 на контакт. Они сравнимы по размерам с интегральными схемами. В качестве контактов используются пленочные пермаллоевые покрытия. Минимальный коммутирующий ток до 10-12 А, напряжение срабатывания (1,3 — 23) В, отпускания (1,15 — 3) В. Ведутся разработки по созданию мощных МУК. Уже выпускаются МУК на максимальную коммутируемую мощность до 250 Вт, коммутируемый ток до 4 А и напряжение до 10000 В.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий