Схемы групп соединения обмоток 3ф. 2обм. трансформаторов
Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.
Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.
12 группа (Y/Y-12, Д/Д-12)
Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12
11 группа (Y/Д-11, Д/Y-11)
Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11
10 группа (Д/Д-10, Y/Y-10)
Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10
9 группа (Y/Д-9, Д/Y-9)
Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9
8 группа (Y/Y-8, Д/Д-8)
Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8
7 группа (Y/Д-7, Д/Y-7)
Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7
6 группа (Y/Y-6, Д/Д-6)
Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6
5 группа (Y/Д-5, Д/Y-5)
Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5
4 группа (Y/Y-4, Д/Д-4)
Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4
3 группа (Y/Д-3, Д/Y-3)
Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3
2 группа (Y/Y-2, Д/Д-2)
Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2
1 группа (Y/Д-1, Д/Y-1)
Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1
Укажем некоторые особенности отдельных схем:
Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;
Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.
Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;
Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.
Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.
Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.
Условные обозначения и расшифровка
Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:
- однотипные соединения (∆/∆, Y/Y) имеют четные номера;
- разнотипные соединения (∆/Y, Y/∆) – нечетные.
Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.
Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.
Так как минимальный сдвиг фаз может составлять 300, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:
Номер группы*300.
Приняты следующие обозначения на электросхемах и устройствах:
- Y, У – звезда;
- Yн, Ун – звезда на стороне низкого напряжения;
- Yо, Уо – звезда с нулевой точкой;
- ∆, Д, D – треугольник;
- ∆н, Дн, Dн – треугольник на стороне низкого напряжения.
Пример маркировки двухобмоточного трансформатора:
- ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 3300;
- Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.
Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:
- A,B, C – начало обмотки;
- X, Y, Z – конец обмотки.
Аналогично для стороны низкого напряжения:
- a, b, c;
- x, y, z.
Подобным образом маркируются многообмоточные устройства, например:
Yо/Y/∆ – 0 – 11.
Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.
Схема работы при отключении одного из трансформаторов
В случае отключении на подстанции трансформатора, присоединенного к шинам питающих проводов, будем иметь практически рассмотренную на рисунке схему с повышающими автотрансформаторами, роль которых выполняют ближайшие к подстанции автотрансформаторы на фидерных зонах.
При этом на участках от подстанции до ближайших к ней автотрансформаторов имеем систему 25 кВ, а на большей части обеих фидерных зон сохраняется система 2×25 кВ. Поскольку сопротивления участков при системе 25 кВ больше, чем их же сопротивление при системе 2×25 кВ, большую нагрузку принимают на себя соседние подстанции.
В случае отключения на подстанции трансформатора, присоединенного к шинам контактной сети, ближайшие к подстанции автотрансформаторы будут работать в трансформаторном режиме и при значительных размерах движения или при тяжелых поездах могут перегружаться.
Схема работы при отключении одного из трансформаторов.
Избежать этого можно или переходом на время отключения указанного трансформатора к одностороннему питанию фидерных зон от соседних подстанций или путем приведения группы соединения работоспособного трансформатора в соответствие с группой отключенного трансформатора и подключением его к шинам контактной сети.
Для этого следует предусмотреть возможность оперативного переключения двух фаз на первичной стороне трансформатора, подключенного в нормальном режиме к шинам питающих проводов.
При необходимости иметь большую степень резервирования трансформаторов можно, как и в случае с однофазными трансформаторами, в качестве резервного использовать третий трехфазный трансформатор с возможностью подключения его к шинам 110 (220) кВ и к шинам контактной сети или питающего провода вместо любого выведенного из работы трансформатора.
Рассмотренные схемы подстанций с трехфазными трансформаторами имеют перспективу на дорогах стран СНГ в местах стыкования систем 25 и 2×25 кВ и на тяговых подстанциях при необходимости питать от них большую районную нагрузку, а также при усилении системы электроснабжения ранее электрифицированных линий.
Базовые принципы действия трансформатора
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
- Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.
Исключение – силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.
Соединение звездой и треугольником обмоток электродвигателя
Соединение звездой и треугольником обмоток электродвигателяВспомним вкратце принцип действия асинхронного двигателя. Питание такого двигателя осуществляется от сети трехфазного переменного напряжения.
В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.
Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:
С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 – начала обмоток, U2, V2, W2 – конец обмоток.
Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку.
Совет
Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.Всего на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.Разберем каждый случай отдельно.Соединение звездой и треугольником.
ПримерЕсли в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).
Для наглядности рассмотрим пример. Допустим, у нас имеется электродвигатель, на табличке которого указано напряжение 220/380 (В).
Что это значит?
А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.
Соединение звездой
Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше.
На клеммнике соединение звездой обмоток будет выглядеть следующим образом.
Соединение треугольникомВернемся к нашему примеру.Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.
Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.
конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)конец обмотки фазы «В» С5 (V2) необходимо соединить с началом обмотки фазы «С» С3 (W1)конец обмотки фазы «С» С6 (W2) необходимо соединить с началом обмотки фазы «А» С1 (U1)Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.
Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).
На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).
Соединение звездой и треугольником. Частный случай
Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.
Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.
В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).
Обратите внимание
Соединение звездой и треугольником. Выводы
В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.
При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.
При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение.
Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).
В связи с вышесказанным, принято асинхронные двигатели средней мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника.
Куда подключать заземление
Кроме нейтрали и фазы в современной электропроводке используется ещё один проводник — защитное заземление. К нему присоединяются корпуса электроприборов и светильников.
При нарушении изоляции между этими деталями и элементами, находящимися под напряжением, возникает короткое замыкание или появляется ток утечки. В результате этого явления происходит отключение автоматического выключателя или дифференциальной защиты, соответственно.
В современной системе электроснабжения жилых домов используются три схемы заземления:
- TN-C. Старая система заземления, при которой заземление линий электропередач осуществляется только в подстанции, на нейтрали вторичной обмотки трансформатора, после чего к потребителю подводится совмещённый проводник PEN, выполняющий одновременно функцию заземления и нейтрали. В этом случае вместо защитного заземления имеет место защитное зануление и подключать к нему корпуса электроприборов запрещено ПУЭ 1.7.132. Для защиты людей от поражения электрическим током в такой системе необходимо использовать УЗО или дифавтомат.
- TN-C-S. Это более современная система, при которой во вводном щитке совмещённый провод PEN разделяется на нейтраль N и заземление РЕ. Место разделения при этом подключается к контуру заземления здания. Согласно ПУЭ п.1.7.135 после разделения соединение этих проводников запрещено. Заземляющий провод в квартирной электропроводке в данной системе необходимо присоединять именно к проводнику РЕ.
- TN-S. Самая современная схема, при которой электроснабжение осуществляется при помощи пяти проводов — три фазных L1, L2 и L3 , нейтраль N и заземление РЕ. В этом случае заземление присоединяется только к заземляющему проводнику.
В крайнем случае, допускается подключать защитное заземление к отдельному контуру, изготовленному согласно нормам ПУЭ п.п.1.7.100-118. В этом случае получится система заземления ТТ.
Важно! Использовать в качестве заземлителя водопроводные, канализационные или отопительные трубы запрещено
4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
Построение векторной диаграммы удобнее начинать с вектора основного
потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a
. Далее строим векторы ЭДС Е1 и Е2‘, которые отстают от потока Ф на
90°. Для определения угла сдвига фаз между E2‘ и I2‘ следует знать характер
нагрузки. Предположим, она – активно-индуктивная. Тогда I2‘ отстает
от E2’ на угол f2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.).
Для того чтобы достроить ее, необходимо воспользоваться тремя основными
уравнениями приведенного трансформатора.
Воспользуемся вторым основным уравнением:
и произведем сложение векторов.
Для этого к концу вектора E2‘ пристроим вектор – j I2‘ x2‘, а к его
концу – вектор – I2‘ r2‘. Результирующим вектором U2‘ будет вектор,
соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение
из которого видно, что вектор тока I1 состоит из геометрической суммы
векторов I10 и – I2‘. Произведем это суммирование и достроим векторную
диаграмму.
Теперь вернемся к первому основному уравнению:
Чтобы построить вектор – Е1 , нужно взять вектор +Е1 и направить его
в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 .
Первый будет идти перпендикулярно току, а второй – параллельно ему.
В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике
можно осуществить ее построение как для различных режимов, так и для
разных характеров нагрузки.
Определение методом гальванометра
Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.
Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.
Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.
РЕМОНТ ЭЛЕКТРОДВИГАТЕЛЕЙ И ТРАНСФОРМАТОРОВ
Магнитопроводы однофазных трансформаторов показаны на рис. 14.2 и 14.3. В броневом магнитопроводе (рис. 14.2) имеются один стержень и два ярма, охватывающие обмотки. По каждому ярму замыкается половина магнитного потока стержня, поэтому площадь поперечного сечения каждого ярма в 2 раза меньше площади сечения стержня.
В стержневом магнитопроводе (рис. 14.3) имеются два стержня, на каждом из которых располагается по половине обмоток 1 и 2. Половины каждой из обмоток соединяются между собой последовательно пли параллельно. При таком расположении обмоток уменьшаются магнитные потоки рассеяния и улучшаются характеристики трансформатора. В трехфазных цепях могут применяться три однофазных трансформатора, обмотки которых соединяются по трехфазной схеме. (рис. 14.4). Такой трансформатор называется трехфазной группой однофазных трансформаторов. Однако чаше применяются трехфазные трансформаторы с общей магнитной системой для всех фаз.
Броневая конструкция магнитопровода трехфазного трансформатора показана на рис. 14.5. Ее можно рассматривать как три броневых магнитопровода для однофазных трансформаторов, поставленных друг на друга.
Рис. 14.2. Однофазный трансформатор с броневым магнитопроводом
Рис. 14.3. Однофазный трансформатор со стержневым магнитопроводом
Рис. 14.4. Трехфазная группа однофазных трансформаторов
Рис. 14.5. Броневой трехфазный трансформатор
Трехфазные трансформаторы часто имеют три стержня и два ярма (рис. 14.6). Возможность применения такого магнитопровода для трансформации в трехфазных цепях видна из рис. 14.7. Если расположить три однофазных трансформатора, как показано на рис. 14.7, а, то три стержня 1—3 можно конструктивно объединить в один. Но так как в симметричной трехфазной системе геометрическая сумма магнитных потоков трех фаз равна нулю, т. е. ФА+ФВ+ФС=0, то этот стержень можно удалить и получить конструктивную схему 14.7, б. Если уменьшить длину ярм магнитопровода фазы В, то получим магнитопровод со стержнями, расположенными в одной плоскости (рис. 14.7, в). По сравнению со схемой на рис. 14.7,б магнитопровод, показанный па рис. 14.7, в, имеет некоторую магнитную несимметрию, так как магнитопровод в этом случае представляет собой магнитную цепь, имеющую два узла и три ветви, из которых средняя короче крайних. Как показывает практика, существенного значения такая несимметрия не имеет.
Рис. 14.6. Стержневой трехфазный трансформатор
Рис. 14.7. Замена трех однофазных трансформаторов одним трехфазным с тремя стержнями и двумя ярмами
На каждом стержне трехфазного стержневого магните провода располагаются обе обмотки одной фазы. В стержневых магнитопровода магнитный поток ярма всегда равен магнитному потоку стержня и площадь поперечного сечения стали в ярме должна быть равна или несколько больше (для уменьшения магнитных потерь) площади сечения стали в стержне. Наибольшее распространение получили магнитопроводы стержневого типа (рис. 14.6).
Группы соединений обмоток
Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.
Рисунок 2. Группы соединений однофазного трансформатора |
На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».
Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.
Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0 |
Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.
Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.
Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11 |
Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с. (напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.
Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые. Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11, Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.
Схемы подключения «звезда» и «треугольник» в трехфазной сети
Передавать электроэнергию выгоднее по высоковольтным ЛЭП, поэтому питание всех жилых районов и большинства промышленных предприятий осуществляется через понижающие трансформаторы, начала вторичных обмоток, которых соединены между собой, а концам обмоток подключаются отходящие фазные провода.
Точка соединения катушек заземляется и к ней подключается нейтральный проводник. Такая схема электроснабжения называется TN и описана в ПУЭ гл.1.7.
Существует две схемы подключения электроприборов к такой сети, отличающихся подаваемым напряжением.
Самая распространенная схема соединения это «звезда». Используется при включении электроприборов, напряжение питания которых составляет 220В. При этом один из проводов каждого из аппаратов присоединяется к одной из фаз, а оставшиеся соединяются вместе и подключаются к нейтрали.
При этом мощность аппаратов может быть различной, что вызовет появление в нейтральном проводнике уравнительного тока, но напряжение на каждом из электроприборов будет постоянным (за исключением потерь в питающих кабелях).
При соединении в «звезду» трёх одинаковых электроприборов ток в нейтральном проводе отсутствует, поэтому его допускается не подключать, но при поломке одного из аппарата напряжение питания каждого из оставшихся составит 190 Вольт.
Поэтому звезда без нейтрали используется, в основном, при подключении трёхфазного электродвигателя.
Менее распространённой является схема соединения «треугольник». При этом каждый из электроприборов подключается к двум из трёх линейных проводников. Напряжение питания всех электроприборов составит 380В.
Такая схема используется в электроустановках, в которых отсутствует возможность подключения нейтрали или заземления, например, в подвижных аппаратах, питание которых осуществляется не кабелями, а при помощи токосъёмных пластин.
Назначение и виды
Трехфазный трансформатор Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.
Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.
По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:
- линейные (станционные) устройства;
- специальные преобразовательные агрегаты.
Особо выделяются трехфазные разделительные трансформаторы, используемые для развязки электрических схем и силовых цепей.
Испытательный трансформатор Специальные устройства делятся на следующие виды:
- Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
- Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
- Симметрирующие трансформаторные агрегаты.
Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.
Расположение магнитной цепи
Стержневые трехфазные трансформаторы подразделяются на трансформаторы с симметричной магнитной цепью и трансформаторы с несимметричной магнитной цепью. Расположение стержней в одной плоскости приводит к тому, что магнитное сопротивление для потока средней фазы меньше, нежели для потоков крайних фаз.
Действительно магнитные потоки крайних фаз проходят по несколько более длинным путям, чем поток средней фазы. Кроме того, поток крайних фаз, выйдя из своих стержней, проходит в одной половине ярма полностью, и только в другой половине (после ответвления в средний стержень) проходит его половина. Поток же средней фазы по выходе из вертикального стержня тотчас же разветвляется на две половины, и потому в обеих частях ярма проходит лишь половина потока средней фазы.
Таким образом потоки крайних фаз насыщают ярмо в большей степени, чем поток средней фазы, а потому магнитное сопротивление для потоков крайних фаз больше, чем для потока средней фазы.
Следствием неравенства магнитных сопротивлений для потоков разных фаз трехфазного трансформатора является неравенство токов холостой работы в отдельных фазах при одном и том же фазном напряжении. Однако при небольшой насыщенности железа ярма и хорошей сборке железа стержней это неравенство токов незначительно.
Так как конструкция трансформаторов с несимметричной магнитной цепью значительно проще, чем трансформатора с симметричной магнитной цепью, то первые трансформаторы и нашли себе преимущественное применение. Трансформаторы с симметричною магнитною цепью встречаются редко.
Будет интересно Масляные трансформаторы – что это такое, устройство и принцип работы
Основные виды устройства
Основную группу трехфазных трансформаторов составляют броневые трансформаторы. Броневой трехфазный трансформатор можно рассматривать как бы состоящим из трех однофазных броневых трансформаторов, приставленных один к другому своими ярмами. Он может быть разбит на три однофазных броневых трансформатора, магнитные потоки которых могут замыкаться каждый по своей магнитной цепи.
У стержневых трансформаторов обмотки почти целиком открыты и потому более доступны для осмотра и ремонта, а также и для охлаждающей среды. Есть ряд преимуществ и недостатков, по которым выбирают тип трансформатора.
Плюсы и минусы броневых трансформаторов перед стержневыми трансформаторами.
Устройства коммутируются по различным схемам соединения обмоток. Групповые трехфазные трансформаторы применяются при наличии очень больших мощностей, от 630кВА на каждую фазу.
Использование при таких условиях группового трансформатора целесообразно потому, что габариты и масса изделия существенно меньше аналогичного агрегата, работающего на общую мощность группы.
Тем более что при использовании одиночного трансформатора для обладания резервной мощностью приходится устанавливать еще один подобный прибор, а в групповом трансформаторе в качестве резервного можно задействовать один из трех однофазных.
Этим и обуславливается выбор групповых трансформаторов для озвученных целей, несмотря на то что они по сравнению с одиночными аналогами имеют меньший КПД, большие габариты и несколько дороже.