Понятие электрической цепи и ее составные части

Источник ЭДС и источник тока

При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.

Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.

Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.

Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.

Источники ЭДС: идеальный (слева) и реальный (справа).

Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.

Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.


Источники тока: идеальный (слева) и реальный (справа).

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Опасность напряжения шага

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

1.1. Основные пояснения и термины

Электротехника – это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

Электроника – это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления информации.

Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники.

Электрическая цепь – это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Электродвижущая сила – электрическая разность потенциалов, создаваемая источником электрической энергии (электрохимическим элементом, механическим генератором, термоэлементом, фотоэлементом и пр.).

Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электрические механизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I.

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i.

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток. Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными – электрические цепи, не содержащие источников энергии.

Линейная электрическая цепь – это такая цепь, в которой ни один параметр цепи не зависит от величины или направления тока, или напряжения.

Нелинейная электрическая цепь – это такая электрическая цепь, которая содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема – это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Рис. 1.1

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения – это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

Рис. 1.2

Как элементы электрической цепи обозначают на схемах

Для наглядности способы соединения элементов изображают графически. Такие чертежи называют принципиальными электрическими схемами (рис. 6). Чтобы не рисовать элементы в подробностях, для них придумали упрощенные обозначения.

Пример цепи и ее электрической схемы

Обозначение каждого элемента стандартизировали. Благодаря стандартам, схема цепи, составленная в какой-либо стране, может быть прочитана и воспроизведена в другой части мира.

Обозначения, принятые в странах СНГ и некоторых странах Европы.

Условные обозначения некоторых элементов электрической цепи

Рядом с графическим символом указывают буквенные обозначения. Элементы на схемах принято обозначать латинскими буквами так:

  • гальваническую батарею GB или B. В качестве источника тока для компактных электронных устройств часто применяют аккумуляторы, или батарейки;
  • выключатель – SA, кнопка —  SB; Для кнопок и выключателей иногда используют только одну букву S;
  • проводник, обладающий сопротивлением – R;
  • соединительные клеммы — буквами XT;
  • символом FU — плавкий предохранитель. Он служит для защиты схемы и из строя первым, как только ток превысит определенный порог, указанный на таком предохранителе;
  •  нагревательный элемент электроплит и других обогревателей — символом EK;
  • лампу накаливания – HL или HA;
  • разъем вилка-розетка – XS;
  • электродвигатель постоянного тока – M;
  • электромеханический звонок – HA.

Часто бывает так, что на схемах присутствуют элементы, обозначаемые одинаковыми графическими значками. Чтобы различать их, дополнительно вводят цифровую нумерацию (рис. 8).

Для нескольких одинаковых элементов цепи применяют цифровую нумерацию

Например, первую лампу обозначают HL1, вторую – HL2, и так далее.

Существует еще одно, полезное для составителя схем, правило.

Благодаря такому правилу, одну и ту же схему можно нарисовать различными способами.

Элементы цепи можно передвигать по схеме, если это не нарушает соединений

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!


водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил, давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Закон Ома

Закон
Ома. Напряжение и ток считаются наиболее благоприятными свойствами
электрических цепей. Одной из основных характеристик применения электроэнергии
является быстрая транспортировка энергии из одного места в другое и передача ее
потребителю в правильной форме. Производство разности потенциалов по току
приводит к мощности, т.е. к количеству энергии, высвобождаемой в электрической
цепи за единицу времени. Как упоминалось выше, для измерения мощности в
электрической цепи потребуется 3 устройства.

Так
каково же сопротивление провода или цепи в целом? Имеет ли проволока, как и
водопроводные трубы или трубки вакуумной системы, постоянное свойство, которое
можно назвать сопротивлением? В трубах, например, соотношение перепада
давления, при котором создается поток, деленное на скорость потока, обычно
является постоянным свойством трубы. Аналогичным образом, тепловой поток в
проволоке подчиняется простому соотношению, которое включает разность
температур, площадь поперечного сечения проволоки и длину проволоки.
Обнаружение этого соотношения для электрических цепей является результатом
успешного поиска.

В
1820-х годах немецкий школьный учитель Георг Ом первым начал искать
вышеупомянутые отношения. Прежде всего, он искал славу и знаменитостей, которые
позволили бы ему преподавать в университете. Это была единственная причина, по
которой он выбрал область исследований, имеющую особые преимущества.

Ом
был сыном слесаря, поэтому он умел рисовать металлическую проволоку различной
толщины, которая ему требовалась для экспериментов. Так как в то время не было
возможности купить подходящую проволоку, Ом сделал это сам. Во время
экспериментов он пробовал различные длины, толщины, металлы и даже температуры.
Он варьировал все эти факторы по порядку. Во времена Ома батареи все еще были
слабыми, в результате чего ток был разной силы. По этой причине исследователь
использовал термопару в качестве генератора, горячая точка которого была
помещена в пламя. Он также использовал грубый магнитный амперметр, а разность
потенциалов (называемая «напряжением» после Ом) измерялась путем
изменения температуры или количества термосплавов.

Доктрина
электрических цепей только начала развиваться. После изобретения батарей около
1800 года, она начала развиваться гораздо быстрее. Были разработаны и
изготовлены (часто вручную) различные устройства, открыты новые законы,
появились понятия и термины и т.д. Все это привело к более глубокому пониманию
электрических явлений и факторов.

Обновление
знаний об электричестве стало, с одной стороны, причиной появления новой
области физики, с другой — основой быстрого развития электротехники, т.е. были
изобретены батареи, генераторы, системы электроснабжения для освещения и
электропривода, электрические печи, электродвигатели и т.д.

Открытия
Ома имели большое значение как для развития изучения электричества, так и для
развития прикладной электротехники. Они упростили прогнозирование свойств
электрических цепей для постоянного тока, а затем и для переменного. В 1826 г.
Ом опубликовал книгу, в которой представил теоретические выводы и
экспериментальные результаты. Но его надежды не оправдались, книга была
высмеяна. Это было связано с тем, что метод грубых экспериментов казался
непривлекательным в то время, когда многие люди были преданы философии.

У
него не было выбора, кроме как отказаться от должности учителя. По той же
причине ему не назначили встречу в университете. В течение 6 лет ученый жил в
нищете, не имея уверенности в завтрашнем дне, с горьким разочарованием.

Но
постепенно его работы впервые стали известны за пределами Германии. Ом
пользовался уважением за рубежом и использовал свои исследования. В результате,
его соотечественники дома должны были признать его. В 1849 году он был назначен
профессором Мюнхенского университета.

Ом
обнаружил простой закон, устанавливающий связь между током и напряжением для
обрыва провода (для части цепи, для всей цепи). Он также создал правила для
определения того, что изменится, если будет взята проволока другого размера.
Закон Ома сформулирован следующим образом: Ток на участке цепи прямо
пропорционален напряжению на этом участке и обратно пропорционален
сопротивлению этого участка.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка

Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода

В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет

Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра

К примеру, действующее значение ЭДС.

Что называется электрической цепью

ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия. Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.


Как по другому называется электрическая цепь

Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.

Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника. Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника

В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника

Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.

Метод узловых (потенциалов) напряжений

ТОЭ › Методы расчета цепей постоянного тока

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие. В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов)

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.


Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий