TL 431 интегральный стабилитрон
Основные характеристики программируемого источника опорного напряжения TL 431
- Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
- Ток на выходе до 100 мА;
- Мощность 0,2 Ватт;
- Диапазон рабочей температуры для TL 431C от 0° до 70°;
- Диапазон рабочей температуры для TL 431A от -40° до +85°.
Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:
- Точность без буквы – 2%;
- Буква А – 1%;
- Буква В – 0, 5%.
Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.
Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.
Схема включения TL 431
В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).
Стабилизатор на основе TL 431
Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).
Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.
Временное реле
Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.
Термостабильный стабилизатор на основе TL 431
Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.
Цоколёвка и проверка исправности TL 431
Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.
TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.
Программы расчёта для TL 431
В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.
Общие рекомендации по ремонту блока питания телевизора
Итак, пошаговая инструкция ремонт импульсного блока питания:
- Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
- Выключаем телевизор, разбираем его.
- Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
- Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
- Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
- Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
- Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
Включаем. На этом этапе возможны три варианта:
- Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
- Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
- Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
Малогабаритный блок питания
Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя. Конструкция двухполярного импульсного блок питания
В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах. Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах. Самодельный источник бесперебойного питания
Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП. Блок зарядки мощной батареи конденсаторов. Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке. Блок питания на 12 вольт схема
Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора. Блок аварийного питания
В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону. Решить возникшую проблему очень легко.
Предупреждение
Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!
ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!!
Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу
Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.
Варианты БП для самостоятельного монтажа
Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.
Простой БП 0-30 В
Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.
Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.
Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.
Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.
В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.
Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.
Вольтметр можно использовать цифровой.
Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.
Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.
Мощный импульсный БП
Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.
Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:
- Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
- Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
- Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.
Чтобы получить выходное напряжение 30 В, вторичную обмотку силового трансформатора нужно перемотать, увеличив количество витков.
Для размещения элементов схемы изготавливают печатную плату.
Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.
На Ардуино
Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может “отдыхать”, функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.
«Умный» блок питания представлен на схеме.
Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.
Печатную плату можно сделать по образцу.
Внешний вид устройства и внутреннее расположение компонентов представлены на фото.
Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.
Где находится БП в системном блоке и как его разобрать
Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.
Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.
Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.
После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.
Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.
Как собрать блок питания с регулировкой тока и напряжения
Электронщики, друзья мои! Не могу не поделиться с вами своим любимым инструментом — регулируемым блоком питания. Если вы только начинаете заниматься электроникой — то это основное устройство, которое должно быть в вашем арсенале.
Для сборки БП вам понадобится трансформатор, выпрямительный модуль, регулятор напряжения и конденсаторы. Ничего особенного, все компоненты можно приобрести в интернет магазинах или на рынке. Главное — правильно выбрать и связать между собой.
Но что самое главное — регулируемый блок питания помогает поддерживать стабильное напряжение и ток, что в свою очередь гарантирует безопасную и точную работу вашего электронного устройства.
Характеристики самодельного блока питания впечатляют своей эффективностью и мощностью. На его основе используется готовая сборка с Алиэкспресс, обладающая следующими параметрами: максимальная мощность до 300 Вт, диапазон входных напряжений от 5 до 40 В и выходное напряжение от 1,2 до 35 В (с возможностью плавной регулировки). Также блок питания имеет регулируемый диапазон постоянного тока от 0,2 до 9 А.
Однако, для управления выходным напряжением и током в блоке установлены два подстроечных резистора, которые нужно заменить на современные многооборотные потенциометры. Несмотря на это, изготовление самодельного БП доступно и не требует больших затрат на дополнительные детали.
Их список:
понижающий преобразователь XL4016; цифровой вольтметр – амперметр; два потенциометра на 10 кОм; кнопка включения питания; два разъёма «крокодил»; штекер 3,5 мм; две декоративные ручки для потенциометров; два гнезда 3,5 мм.
Начинаем паять схему
Начнем изготовление блока-приставки для регулировки тока и напряжения. В первую очередь, необходимо извлечь подстроечные резисторы с платы преобразователя. Вместо них будут установлены переменные резисторы на проводах, которые после монтажа панели прибора позволят производить нужные регулировки.
Этот прибор может похвастаться еще одним удобным свойством – индикаторный светодиод, который легко заметить на передней панели. Он может гореть в двух цветах – синем и зеленом, чтобы показать, что прибор работает в нормальном режиме. Но если происходит перегрузка, то светодиод моментально меняет цвет на красный – так функционал прибора становится еще более практичным. Это полезная индикация, которая поможет быстро определить, что происходит с прибором.
Блок питания для электроники собирают мастера часто из пластиковых корпусов, которые легко самостоятельно создать. Для этого в лицевой панели делают отверстия для индикатора и регулировочных резисторов, а также гнездо для выходного напряжения. В задней панели размещены гнездо входного напряжения и выключатель питания. Корпуса скрепляются клеем на основе цианоакрилата, который надежно держит пластиковые панели вместе. Чтобы избежать перегрева, мастера сверлят в корпусе вентиляционные отверстия, которых должно быть как можно больше.
Все части ручного блока питания располагаются в корпусе и соединяются по необходимости, последующий монтаж электронной схемы осуществляется, затем цифровой дисплей подсоединяется к передней панели. Когда всё готово, вам остается только закрыть верхнюю крышку и затем произвести распайку всех выходных разъемов и проводов. После этого вы можете отложить паяльник и наслаждаться работой своего нового блока питания.
Для правильного функционирования понижающего преобразователя необходимо подключить источник питания
Важно отметить, что данный модуль не повышает напряжение, поэтому максимальное выходное напряжение зависит от выбранного первичного блока. В качестве источника питания можно использовать старый ноутбучный блок на 24 В. Таким образом, самодельный блок питания не будет иметь выходное напряжение выше этой величины
Таким образом, самодельный блок питания не будет иметь выходное напряжение выше этой величины.
В целях обеспечения бесперебойной работы прибора, внешнее питание должно быть подключено и протестировано на различных режимах и с различными уровнями нагрузок. Если текущий ток превышает установленный предел, то автоматически срабатывает режим ограничения по току, и на приборе загорается красный светодиод, сигнализирующий об этом.
Данный блок можно использовать также для питания микродвигателей электроинструмента или зарядки батарей. Прекрасно работает!
Детали и печатная плата
Для работы источника необходим силовой трансформатор, дающий на вторичной обмотке напряжение 27…30 В. Для этой цели подойдет унифицированный трансформатор ТП8-18-220-50 с магнитопроводом ШЛ 16×25.
Детали питающего устройства кроме трансформатора собраны на печатной плате из одностороннего фольгированного текстолита размером 95×35 мм (рис. 2).
Рис. 2. Печатная плата для схемы двуполярного стабилизатора-преобразователя напряжения.
Рис. 3. Монтаж деталей на печатной плате для двухполярного источника питания.
Для обеспечения нормального температурного режима работы транзисторов следует для них изготовить теплоотводы из дюралюминия.
При исправных деталях и правильной сборки устройство начинает сразу работать. Устройство особой наладки не требует, желательно проконтролировать вольтметром величины выходного напряжения и если оно отличается от требуемого, то надо подобрать стабилитроны VD5, VD7 и резисторы R1 и R2.
Литература: В.М. Пестриков. – Энциклопедия радиолюбителя.
Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.
Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.
С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.
Описание микросхемы
LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.
Микросхема может быть исполнена в корпусе ТО-220:
или в корпусе D2 Pack
Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.
Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!
Сборка в железе
Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)
Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.
А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.
Все это аккуратно упаковываем в корпус и выводим провода.
Ну как вам? 😉
Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.
Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт
Все работает на ура!
Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.
Аналоги на Алиэкспресс
Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.
Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:
Посмотреть можно по этой
ссылке.
Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:
Утилиты и справочники.
cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.
Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).
Transistors.rar — База данных по транзисторам в формате Access.
Высоковольтная цепь
Трансформатор я решил просто приклеить к матовому дну корпуса на сильно разогретый термоклей: эксплуатация этого блока планировалась исключительно в горизонтальном положении, поэтому “уплывать” в случае разогрева ему просто некуда, хотя, конечно, можно было использовать и какой-нибудь другой клей. В итоге высоковольтная часть после всей коммутации и вклеивания выглядит вот так:
Да, в плане защиты, из-за отстутствия варистора, я выбрал вариант со стабилитронами, т.к. их всё равно валяется куча и мне чёт кажется, что хрен я их всех заюзаю когда-нибудь. Надо, в общем, тратить! Поэтому варистора на фото выше вы не видите, зато присутствует родное ферритовое кольцо на проводах и два небольших фильтрующих кондёра, подключенных между силовыми проводами и “землёй”. Корпус устройства, естественно, заземлён, и в случае, если фазу пробьёт на корпус – моментально сгорит предохранитель, то есть можно быть уверенным, что от корпуса вас не шандарахнет. Естественно, крайне рекомендовано наличие в щитке работающего УЗО, а не простых автоматических пакетников, т.к. именно УЗО защищает человека от смертельных ударов током.
Виды и принцип работы
Выполнен блок питания (БП) самостоятельно или приобретён серийный экземпляр, требования, предъявляемые к нему неизменные, а именно: высокий коэффициент полезного действия (КПД), малый размер, высокая стабильность выходного сигнала, отсутствие электропомех, а также высокая надёжность.
Основная классификация источников питания осуществляется по режиму работы, он бывает линейным и инверторным. Соответственно Б. П. разделяются:
- на аналоговые (линейные);
- на цифровые (инверторные).
Из важных параметров БП выделяют:
- Тип выходного сигнала. В результате преобразования, напряжение на выходе может быть переменной или постоянной величины.
- Мощность. Характеризуется током, которое выдаёт устройство без ухудшения характеристик выходного напряжения. Единица измерения ватт.
- Коэффициент полезного действия. Показывает эффективность работы прибора, т. е. отношение преобразованной энергии к переданной. Чем показатель больше, тем менее греется устройство при работе.
- Защита от перегрузок. Способность устройства реагировать на возникновение нештатных ситуаций в питаемых им устройствах.
- Система охлаждения. По виду охлаждения разделяются на пассивные и активные. К пассивному виду относятся радиаторы или естественное охлаждение, к активному, нагнетатели воздуха или водяное охлаждение.