Из каких элементов состоит система автоматизации водоснабжения

Автоматизация системы водоснабжения

ВВЕДЕНИЕ

1. Обзор технической
литературы

1.1 Система водоснабжения
как объект автоматизации

1.2 Виды водоснабжения

1.3 Основные элементы
системы водоснабжения

1.4 Описание
технологического процесса прямоточного водоснабжения

2. Разработка функциональной
схемы автоматизации процесса

2.1 Структурная схема АСУ
ТП водоснабжения

2.2 Подбор необходимых
датчиков, исполнительных механизмов и мест их расположения

5) Резервуары для воды
выбраны: РВС-100 и РВС-200 (100 и 200 м3 – резервуар 1 и 2
соответственно)

2.3 Схема информационных
потоков АСУ технологическим объектом

2.4 Выбор контроллера для
автоматизированной системы

2.5 Функциональная схема
технологического объекта

3. Разработка алгоритмов
функционирования

3.1 Алгоритм
функционирования СУ технологического объекта

3.2 Алгоритм запуска
технологического объекта

3.3 Алгоритм
функционирования системы

3.4 Алгоритм остановки
системы

3.5 Алгоритм работы
системы при аварии

ЗАКЛЮЧЕНИЕ

Приложение А

Приложение Б

Введение

Ускорение научно-технического прогресса и интенсификация производства
невозможны без применения средств автоматизации. Характерной особенностью
современного этапа автоматизации состоит в том, что она опирается на революцию
в вычислительной технике, на самое широкое использование микропроцессорных
контроллеров, а также на быстрое развитие робототехники, гибких
производственных систем, интегрированных систем проектирования и управления,
SCADA-систем.

Применение современных средств и систем автоматизации позволяет решать
следующие задачи:

•        вести процесс с производительностью, максимально достижимой для
данных производительных сил, автоматически учитывая непрерывные изменения
технологических параметров, свойств исходных материалов, изменений в окружающей
среде, ошибки операторов;

•        управлять процессом, постоянно учитывая динамику
производственного плана для номенклатуры выпускаемой продукции путем
оперативной перестройки режимов технологического оборудования,
перераспределения работ на однотипном оборудовании и т. п.;

•        автоматически управлять процессами в условиях вредных или
опасных для человека.

Решение поставленных задач предусматривает целый комплекс вопросов по
проектированию и модернизации существующих и вновь разрабатываемых систем
автоматизации технологических процессов и производств.

В данном курсовом проекте рассматривается автоматизация системы
водоснабжения.

1. Обзор технической литературы

Колодезный насос с автоматикой: особенности функционирования, подключение

Существует ли различие между скважинными и колодезными насосами? Да, но точнее будет говорить, что для выкачки воды из колодца применяются насосы с определенными техническими характеристиками. Это моноблочные центробежные устройства, где двигатель, водозаборные элементы и патрубок находятся в одном корпусе.

Колодезный насос устанавливается на глубине не более 25 м. Он имеет довольно низкую производительность. Насос для колодца с автоматикой следует располагать так, чтобы он не дрейфовал по водяному пласту. Необходимо также исключить вибрации агрегата, так как они будут поднимать со дна всевозможные нежелательные частицы.

Следует отметить, что защита от попадания и налипания на лопатки колеса твердых частиц в колодезных насосах слабая. Поэтому при перекачивании загрязненной воды они быстро теряют номинальную производительность.

Колодезные насосы, то есть центробежные, отличаются от вибрационных и способом защиты от работы «насухую». Заключается она в следующем: при снижении интенсивности заходящего в насос водяного потока (при попадании воздуха) сила тока электродвигателя устройства тоже уменьшается. На сложившуюся ситуацию реагирует датчик, подавая сигнал об отключении агрегата.

Подключение погружного насоса для колодца выполняется по такой же схеме как и скважинного

Схема подключения погружного насоса для колодца практически такая же, как и скважинного. Отличие только в способе фиксирования: скважинный крепится к оголовку; для колодезного изготавливается металлическая рама, в ней проделывается отверстие, в которое и вставляется трос.

Функции преобразователя частоты при автоматизации насосных станций

  1. Плавность торможения и пуска электронасоса.
  2. Автоуправление по давлению или уровню
  3. Защищает от «сухого хода».
  4. Автоматизм выключения насоса при снижении напряжения, неполнофазном режиме, аварии в водопроводе.
  5. Защищенность от перенапряжения на входе частотного преобразователя-А1.
  6. Сигнализация о режиме включения/выключения насоса и авариях.
  7. Нагрев шкафа управления в помещении насосной станции при минусовых температурах.

Плавность пуска/торможения насоса выполняется с использованием преобразователя частоты серии FR-Е-5,5к-540ЕС.

Двигатель погружного электронасоса подключают к выводам-U,V,W преобразователя. Если нажать клавишу пуска- SВ2, сработает реле-К1, соединяющее при помощи контакта-К1.1 входы преобразователя частоты РС и STF. Это гарантирует плавность пуска насоса согласно программе, заданной в процессе настройки частотного преобразователя.

При поломке преобразователя или цепей электромотора замыкается электроцепь А-С, приводя к срабатыванию реле-К2. После этого замыкаются К2.10,К2.2, а К2.1 в электроцепи К1 – размыкается. Реле-К2 и выход частотного преобразователя отключаются. Чтобы опять включить схему в такой ситуации, потребуется в обязательном порядке устранить аварию и нажать кнопку 8В3.1, сбрасывающую защиту. Отрицательная обратная связь в имеющейся системе стабилизации давления гарантируется датчиком давления с аналоговым выходом4-20 мА, подсоединенным к аналоговому входу в контактах-4,5.

Надежная работа стабилизационной системы поддерживается ПИД-регулятором частотного преобразователя. Необходимое давление достигается с помощью пульта управления преобразователя или потенциометра-К1. При «сухом ходе» электронасоса замыкается 7-8-контакт реле сопротивления в цепи-А2 катушки реле. Когда реле-КЗ срабатывает, замыкаются К3.1, КЗ.2. Срабатывают реле защиты, отключая двигатель. Через К3.1-контакт реле-КЗ становится на самостоятельную подпитку.

При аварии включатся лампа-НL1. При избыточном снижении уровня жидкости, называемом «сухим ходом» электронасоса, включается лампа-НL2. Обеспечение нормального температурного режима шкафа управления зимой выполняется с использованием нагревателей ЕК1-ЕК4, включаемых контактором-КМ1 при сработке ВК1-термо-реле. Защита преобразователя частоты от перегрузок, скачков напряжения, коротких замыканий выполняется автовыключателем-QF1. 

Автоматизация горячего водоснабжения

Как было упомянуто, горячее водоснабжение может быть централизованным и местным.

В местных системах горячего водоснабжения подогрев воды осуществляют локально, в газовых водонагревателях или колонках, с учетом того, что каждый нагреватель имеет собственную систему автоматики, разрабатывать интегрированную систему автоматизации нет смысла, достаточно обеспечить хорошую теплоизоляцию трубопроводов и вывести (при необходимости) данные о работе установки на пульт управления зданием.

Иногда целесообразно осуществлять управление электрическим котлом, в зависимости от присутствия людей в здании (показания датчиков движения или СКУД).

В системах централизованного отопления или водоснабжения, автоматизации подлежит все технологическое оборудование: циркуляционные насосы, клапаны и вентили трубопроводов, оборудование теплообменников и радиаторов, подогреватели и т.п. Проект автоматизации ГВС разрабатывается совместно с проектом автоматизации ИТП.

Основная цель автоматизации систем ГВС – поддержание в системе заданного давления и температуры, кроме того автоматизация систем горячего водоснабжения выполняет следующие задачи:

  • Повышения надежности теплоснабжения и горячего водоснабжения потребителей;
  • Уменьшение зависимости от «человеческого фактора», возможность эксплуатации без постоянного присутствия оперативного персонала
  • Оптимизации отпуска и потребления тепла, снижения коммунальных расходов;
  • Снижения затрат электрической энергии в насосных установках;
  • Увеличения ресурса работы и облегчение эксплуатации технологического оборудования;
  • Контроля состояния технологического оборудования и технологических параметров;
  • Оперативной передачи предупредительной и аварийной информации на диспетчерский пункт.

1.4 Описание технологического процесса прямоточного водоснабжения

Прямоточная система применяется для хозяйственно-питьевого и противопожарного водоснабжения. В некоторых случаях применяется и для производственно-технического водоснабжения.

На рис.1 приведена схема взаимосвязи основных элементов в прямоточной системе водоснабжения. Именно по такой схеме осуществляется водоснабжение городов, поселков и других населенных пунктов.

Рис. – Схема прямоточной системы водоснабжения: 1 – водозабор; 2.1 – насосная станция 1-го подъема; 3.1 – очистные сооружения природной воды; 3.2 – очистные устройства для загрязненных стоков; 4.1 – резервуар чистой воды; 5 – водоводы; 6 – водонапорная башня (резервуар); 7.1-7.6 – потребители воды (цеха, здания); 8 – водопроводная сеть; 9 – сеть трубопроводов для сбора отработавшей воды; 10 – водоохлаждающее устройство.

При работе этой системы вода забирается из источника с помощью водозаборного устройства 1 и подается насосами насосной станции 1-го подъема (НС 1) на очистные сооружения 3.1. Здесь обычно вода идет самотеком. Очищенная до необходимого качества она собирается в резервуаре очищенной воды 4.1. Отсюда насосами насосной станции 2-го подъема (НС 2) вода по водоводам 5 подается на территорию предприятия. Из водоводов вода попадает в водопроводную сеть 8 и подается потребителям 7.1-7.6.

Присоединенная к сети регулирующая емкость 6 позволяет сглаживать влияние пиков водопотребления на работу насосов НС 2. Она может быть установлена в любой точке водопроводной сети.

Вся отработавшая вода сбрасывается в источник ниже (по течению) места забора воды. При необходимости эта вода очищается и охлаждается перед сбросом. В этом случае в системе предусматриваются устройства 3.2 и 10.

Недостатки прямоточной системы водоснабжения:

а) производительность всех элементов приходится выбирать из условия покрытия максимума суточного расхода. Это увеличивает размеры сооружений и мощности всех элементов системы, что удорожает ее. Возрастает и удельный расход энергии из-за работы насосных агрегатов бoльшую часть времени в нерасчетном режиме;

б) необходим источник с достаточным дебитом воды. Часто он удален от предприятия и приходится сооружать длинные водоводы. Это тоже ведет к удорожанию и снижению надежности системы;

в) в прямоточной системе вся отработавшая вода сбрасывается в природные водоемы. Эти водоемы должны обладать способностью поглощать эти сбросы без нарушения экологического равновесия.

Прямоточная система обеспечивает подачу наиболее качественной воды. Она единственно возможна там, где исключается повторное использование воды. Это в хозяйственно-питьевом и противопожарном водоснабжении.

В техническом водоснабжении часто можно обходиться без очистных сооружений, что удешевляет систему и увеличивает ее надежность.

2. Разработка функциональной схемы автоматизации процесса

Архитектура и выполняемые функции

Система строится с использованием программно-логических контроллеров и в общем случае имеет трёхуровневую структуру:

  • супервизорный (верхний) уровень – центральный диспетчерский пункт (ЦДП)
  • диспетчерский уровень подсистем водоканала
  • уровень локальных АСУ ТП, АСКУЭ и АСКУВ (нижний уровень).

На супервизорном уровне реализуются:

  • контроль за оборудованием всех объектов водоканала и показателями их работы
  • архивирование и документирование всей необходимой информации
  • координация действий по совместной работе подсистем и ведение оптимальной безаварийной работы всей системы городского водохозяйства
  • учёт суммарной потребляемой электроэнергии по всем контролируемым объектам.

На диспетчерском уровне реализуются:

  • контроль за оборудованием локальных АСУ ТП конкретной подсистемы и показателями их работы
  • архивирование и документирование всей необходимой информации
  • координация действий по слаженной работе локальных АСУ ТП конкретной подсистемы и ведение их оптимальной безаварийной работы
  • учёт суммарной потребляемой электроэнергии по всем контролируемым объектам подсистемы
  • расчёт статистически обобщенных данных по всем контролируемым объектам подсистемы
  • дистанционное управление оборудованием.

На уровне локальных АСУ ТП реализуются:

  • программно-логическое управление насосными агрегатами и запорной арматурой, в том числе частотными приводами
  • блокировки и противоаварийные защиты
  • учёт потребляемой электроэнергии
  • алгоритмы равномерного использования агрегатов по заданной наработке
  • контроль качества воды
  • учёт воды, отпускаемой потребителям.

АСКУЭ, как специфическая часть уровня АСУ ТП, выполняет следующие функции:

  • Коммерческий учёт потребляемой электроэнергии (активной и реактивной составляющей электроэнергии) и режимных параметров электрической сети по всем контролируемым объектам.
  • Учёт потребляемых теплоресурсов на собственные нужды.

Функция АСКУВ – коммерческий учёт отпускаемых потребителям воды по всем контролируемым объектам.

Подсистема визуализации, которая может быть составляющей любого из вышеперечисленных уровней, обеспечивает отображение технологической информации на экране операторской станции в виде:

  • мнемосхем с различной детализацией информации
  • обобщенных кадров аварийных состояний
  • графиков изменения контролируемых параметров
  • протокола событий о состоянии технологических объектов
  • отчетов и ведомостей.

Система диспетчеризации водоканала

Структура автоматизированной НС

Упрощенная структурная схема автоматизированной НС с частотно-регулируемым электроприводом приведена на рис. 3.

Рис. 3. Структурная схема автоматизированной насосной станции

Электроснабжение НС осуществляется от трансформаторной подстанции ТП. Электроэнергия поступает на распределительное устройство РУ, к которому подключено силовое электрооборудование. Здесь же размещены первичные аппараты для средств учета потребляемой электроэнергии.

Силовое электрооборудование размещено в электрощитовой НС. Оно содержит: силовые шкафы управления СШУ, преобразователь частоты ПЧ и, при необходимости, компенсатор реактивной мощности КРМ. Силовой шкаф управления содержит коммутационный аппарат, с помощью которого осуществляется коммутация питания электропривода М центробежного насоса Н либо к выходу ПЧ, либо к секции РУ.

В машзале НС размещено основное и вспомогательное оборудование НС. Основное оборудование включает насосы ЦН1–ЦН3, электроприводы М1–М3. В состав вспомогательного оборудования входят: дренажные, пожарные, вакуум-насосы; задвижки; вентиляторы; обогреватели и другое оборудование. Управление им производится при помощи исполнительных механизмов ИМ1–ИМn.

Для получения информации о значениях регулируемых параметров служат датчики Д1–Дm.

Сигналы управления и измерительные сигналы от оборудования НС собираются в шкафу управления ШУ. Здесь же происходит их объединение в одну общую информационную линию связи, которая подключается к технологическому контроллеру ТК.

Технологический контроллер реализует общий алгоритм управления НС и обмен информацией с автоматизированной системой управления технологическим комплексом АСУ ТК. Программное обеспечение ТК содержит ряд функциональных блоков, реализованных на программном уровне:

  • Управление основной насосной установкой.
  • Управление дополнительной насосной установкой, например пожарными насосами.
  • Управление дренажными насосами.
  • Измерение и обработка параметров оборудования НС.
  • Управление отоплением и вентиляцией помещений НС.
  • Осуществление функций охраны от несанкционированного проникновения посторонних лиц на территорию НС.
  • Обслуживание локального терминала.
  • Передача информации о параметрах и режимах работы оборудования НС на АСУ ТК и обработка сигналов управления, получаемых от нее.

Примеры реализации НС с автоматизированным частотно-регулируемым электроприводом

Рассмотренные в статье принципы построения автоматизированных НС с асинхронным частотно-регулируемым электроприводом могут быть применены на НС различного назначения.

Одним из примеров служит НС системы во-дооборота глиноземного производства . Здесь выполнена работа по модернизации электропривода центробежного насоса мощностью 125 кВт. Преобразователем частоты оснащен один из четырех электроприводов.

Другим примером является автоматизация управления электроприводами насосов мощностью 200 кВт на фекальной насосной станции нефтеперерабатывающего завода, которая обслуживает непосредственно предприятие и прилегающий к нему жилой микрорайон. На данном объекте предусмотрено оснащение преобразователем частоты двух из четырех электроприводов насосов .

В обоих случаях управление электроприводами осуществляется по уровню жидкости в приемном резервуаре. Один из алгоритмов автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре приведен на рис. 4. Для установок применен комбинированный способ регулирования подачи НС, сочетающий плавное регулирование подачи за счет изменения частоты вращения и дискретное регулирование расхода путем подключения или отключения насосов.

Рис. 4. Алгоритм автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре

Модернизация дала следующие результаты:

  • снижено потребление электроэнергии;
  • появилась возможность плавного регулирования частоты вращения насосов в соответствии с требованиями технологического процесса и обеспечения более высокого уровня автоматизации;
  • обеспечен надежный плавный пуск электропривода при токах ниже номинального значения;
  • снижена аварийность питающей сети и механического передаточного оборудования, и, следовательно, увеличен межремонтный период.

Регулировка

Как настраивается автоматизированное водоснабжение частного дома, и в каких случаях нужна настройка оборудования?

Начнем со второго вопроса.

Регулировка позволяет:

  • Увеличить давление отключения насоса и, тем самым, максимальный напор в водопроводе;
  • Поднять давление включения, уменьшив дельту напора. Постоянные изменения давления в широком диапазоне неудобны, если вы, к примеру, моете посуду под тонкой струей воды;
  • Уменьшить давление отключения и, вслед за ним, частоту включений насоса. Именно количество запусков определяет ресурс прибора: стартовые токи и значительные механические нагрузки в момент включения значительно сокращают срок службы любого оборудования;
  • Изменить давление накачки гидроаккумулятора (давление в воздушном отсеке при пустом водопроводе), тем самым уменьшив или увеличив его вместимость;

Полезная емкость мембранного гидроаккумулятора в зависимости от давления накачки и настроек автоматики

Отрегулировать постоянное давление в водопроводе или на его отдельном участке (скажем, перед стиральной и посудомоечной машинами) с помощью редуктора.


Перейдем к способам настройки.

Реле

Если электронные реле настраиваются через панель управления, то в случае электромеханического устройства нам потребуется вскрыть его корпус.

Под крышкой вы увидите две пружины с гайками разного размера.

На фото — реле давления со снятой крышкой

Большая отвечает за давление выключения (вращение по часовой стрелке увеличивает его, против — уменьшает). Маленькая гайка при затягивании увеличивает дельту давлений между точками выключения и включения.

Настройка реле

Гидроаккумулятор

Для регулировки давления накачки нам понадобится найти на корпусе мембранного бачка ниппель. Обычно он скрывается под металлическим или пластиковым колпаком. Устройство и размер ниппеля ничем не отличаются от автомобильного или велосипедного золотника.

Ниппель в воздушном отсеке гидроаккумулятора насосной станции

Чтобы стравить воздух из мембранного бака, достаточно нажать отверткой или любым другим подходящим по размеру предметом на короткий стержень в центре ниппеля. Накачать его можно насосом или компрессором (желательно — с встроенным манометром).

Накачка мембранного бачка автомобильным компрессором

Редуктор

Регулировочный винт обычно скрывается под пластиковой крышкой на одном из торцов редуктора давления. Регулировка выполняется широкой плоской отверткой: поворот по часовой стрелке увеличивает напор воды во внутреннем водопроводе.

Винт для настройки редуктора

Характеристики НС

Основными характеристиками НС являются зависимости выходных подачи и давления жидкости от времени и входной подачи, а также от ряда возмущающих воздействий. Эти зависимости отражают изменение режима работы НС.

Анализ характеристик НС осуществляется на основе ее математической модели . В общем случае для m насосов, соединенных параллельно, уравнения системы имеют вид:

динамика изменения уровня жидкости в резервуаре

Sxdl/dt = QВХΣ – QВЫХΣ – QУВЫХ)    , (1)

где l и S — уровень и площадь поверхности жидкости в резервуаре соответственно; QВХΣ и QВЫХΣ — результирующие подачи жидкости на входе и выходе НС соответственно; QУВЫХ) — подача утечек, задаваемая в функции от выходного давления РВЫХ;

баланс подач жидкости на выходе НС:

A×Q=0,          (2)

где А = — узловая вектор-строка размерностью m+2; Q = [QЦН1QЦН2 … QЦН2 QВЫХΣQУ]Т — вектор-столбец подач всех элементов, соединяющихся на выходе НС;

условие равенства давлений на выходе параллельно работающих насосов:

B×P=0,                (3)

где В — контурная матрица размерностью mxm–1; Р = [ΔРЦН1 ΔРЦН2 … ΔРЦНm]Т  — вектор-столбец перепадов давления системы насос-задвижка; 0 — нулевой вектор столбец размерностью m–1. Матрица В имеет следующий вид:

                        (4)

Перепад давления на соединенных последовательно насосе и задвижке определяется зависимостью, учитывающей регулирование частоты вращения насоса ωЦН1 и изменение положения задвижки хЗi:

ΔРЦНi = ΔРЦНi (QЦНi, ωЦНi) – Р3i(QЦНi, x3i),         (5)

баланс напоров жидкости на выходе НС:

РВХ(l) + ΔРЦНi = РВЫХ = РСТ + РГ(QВЫХΣ),         (6)

где РВХ(l) — давление на входе насосов, зависящее от уровня жидкости во входном резервуаре; РСТ и РГ(QВЫХΣ)— статическое противодавление и динамический перепад давления в гидравлической сети соответственно.

При решении приведенной системы уравнений следует дополнительно выполнять анализ направления подачи через каждый насос. При получении отрицательного значения подачи через насос, уравнения, описывающие гидравлические процессы в нем, исключаются из рассмотрения, и порядок системы m понижается на единицу.

Для получения рационального алгоритма управления НС должен быть выполнен анализ гидравлического режима работы насосного оборудования. Баланс расходов и давлений жидкости для случая трех параллельно работающих насосов описывается математической моделью на основе системы уравнений (1–6). При m = 3 после раскрытия матриц получаем следующие уравнения для балансов подач и напоров:

                                (7)

На рис. 2 показан качественный характер изменения параметров системы из трех насосов, в которой регулируется частота вращения рабочего колеса одного из насосов. Насосы имеют характеристики вида 1, а магистраль — характеристику вида 4. Увеличение подачи и давления производится в следующем порядке. На начальном этапе в работу включается один насос с частотно-регулируемым электроприводом. Для обеспечения подачи Q1 его частота вращения увеличивается до значения ω1. Дальнейший рост подачи и давления возможен до величин Q3 и Р3 соответственно. Если необходимо обеспечить дальнейшее увеличение подачи, то происходит переключение питания электропривода первого насоса с выхода преобразователя частоты на сеть, а к выходу преобразователя частоты коммутируется электропривод второго насоса и частота вращения увеличивается до требуемого значения. Например, для обеспечения подачи и давления Q2′ и Р2′ соответственно частота вращения второго насоса должна быть увеличена до значения ω2’. Таким образом обеспечивается регулирование параметров НС в области, заключенной между характеристиками 1 и 2. При необходимости дальнейшего увеличения подачи и давления до значений выше Q3′ и Р3′ питание электропривода второго насоса переключается с выхода преобразователя частоты на сеть и в работу вводится третий насос, управляемый частотно-регулируемым электроприводом. В этом случае регулирование происходит в области, заключенной между характеристиками 2 и 3.

Рис. 2. Комбинированное регулирование режима работы насосной станции

При снижении подачи и давления коммутация и регулирование частоты вращения электроприводов насосов происходит в обратном порядке.

Рассмотренный способ регулирования режима работы насосной установки обеспечивает плавное и непрерывное изменение подачи и давления жидкости в широком диапазоне изменения значений регулируемых параметров от Q1 до Q3» и характеристики сети от 4 до 4′.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий