Управляемый трехфазный мостовой выпрямитель — как работает
Рассматриваемый выпрямитель (рис. 4.26) широко используется в устройствах большой мощности.
Опишем работу выпрямителя при подключении его к активной (рис. 4.26, а) и активноиндуктивной (рис. 4.26, б) нагрузке. Изучаемый выпрямитель подобен рассмотренному однофазному мостовому, но получает питание от трехфазного источника напряжения, содержит 6 тиристоров, представляет собой достаточно сложную систему и вследствие этого более труден для анализа.
В однофазном мостовом выпрямителе каждый тиристор может проводить ток в паре с единственным тиристором и таких пар всего две. В трехфазном мостовом выпрямителе каждый тиристор может проводить ток в паре с одним из двух тиристоров противоположной группы. К примеру, тиристор Г, может проводить ток или в паре с тиристором Г5, или в паре с тиристором Г6. Вследствие этого имеется 6 пар тиристоров, совместно проводящих ток нагрузки.
Основная трудность при анализе выпрямителя состоит в том, чтобы определить, какая пара тиристоров находится во включенном состоянии или может в нем находиться (т. е. может быть включена импульсами управления). Подобные проблемы типичны для всех электронных устройств, содержащих нелинейные и, в частности, работающие в ключевом режиме элементы. При анализе таких устройств очень полезно выявить их характерные особенности, сужающие круг возможных сочетаний режимов работы элементов и упрощающие определение токов и напряжений.
— Не могут быть включены два тиристора одной группы (так как их проводящее состояние обеспечило бы протекание под действием соответствующего линейного напряжения очень большого обратного тока одного из тиристоров, что невозможно для исправного прибора). — Если имеется пара включенных тиристоров, то напряжение ивых равно определенному линейному напряжению, причем возможны 6 вариантов:
Например, при включенных тиристорах Г, и Т5 ивых = = иаЬ а при включенных тиристорах Т4 и Т2 ивых = — иаЬ
Пусть в некоторый момент времени при включенной одной паре тиристоров ивых = и
Источник
Однополупериодный многофазный выпрямитель
Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.
Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:
- эффективность (КПД) действия такого устройства очень низка;
- полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
- при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.
Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.
Однофазная мостовая схема выпрямления
Наибольшее распространение получила мостовая схема выпрямления, исследуемая в данной лабораторной работе (рис.2.1,а). Из рисунка видно, что выпрямитель содержит четыре вентиля V1-V4,включенных по мостовой схеме. На одну диагональ моста подается переменное напряжение, а с другой диагонали моста выпрямленное напряжение подается .на нагрузку RH.
Каждая пара диодов (V1;V4 и V2;VЗ)работают поочередно. Диоды V1;V4открыты в первый полупериод напряжения U2,когда потенциал точки Авыше потенциала точки В.В интервале от 0 до Т/2токi2 протекает от точки Ачерез вентиль V1, резистор RH,вентильV4,точкуВ,источникU2(обычно вторичная обмотка трансформатора, которая на схеме не указана), к точке А.Во второй полупериод потенциал точки Ввыше, чем потенциал точки А.Ток протекает от точки Вчерез вентиль V2,резистор Rн вентиль V3, источник U2 к точке В.
На рис. 2.1 приведены временные диаграммы, поясняющие принцип действия выпрямителя, выполненного по мостовой схеме.
Среднее значение выпрямленного напряжения Uопределяют как среднее за полупериод значение напряжения U2
гдеU2 — действующее значение напряжения и2 .
Обратное напряжение прикладывается одновременно к двум непроводящим диодам на интервале проводимости двух других диодов. Форма обратного напряжения для диодов VI,V4 показана на рис. 2.1,г. Максимальное обратное напряжение определяется амплитудным значением напряжения U2m:
Рис. 2.1. Схема однофазного мостового выпрямителя (а)и его временные диаграммы (б-г)
Как видно из рис. 2.1,в,выпрямленное напряжение имеет пульсирующий характер. Разложение такой периодической функции в ряд Фурье показывает, что она состоит из суммы постоянной составляющей(U)и четных гармонических составляющих, т.е.
Для оценки качества выпрямленного напряжения пользуются коэффициентом пульсации Кп, который равен отношению амплитудного значения первой гармоники выпрямленного напряжения Um1к постоянной составляющей, равной среднему значению выпрямленного напряженияU:
При мостовой схеме выпрямителя Um1=2/3U, тогда Kп= 0,б7, и коэффициент пульсации можно вычислить по формуле:
гдет — числофаз. Для исследуемого выпрямителя т = 2:
Для питания большинства электронных устройств напряжение такой формы не обеспечивает нормальную работу, поэтому пульсации стремятся уменьшить до заданного уровня. Устройства, с помощью которых достигается снижение пульсаций, называют сглаживающими фильтрами.
В зависимости от принципа действия и используемыхэлементов сглаживающие фильтры разделяют на активные и пассивные. Простейшимпассивным фильтром является емкостной фильтр, исследуемый в данной работе (рис.2).
При подключении конденсатора параллельно нагрузке пульсирующий ток распределитсяследующим образом: переменная составляющая пройдет через конденсатор, так как онобладает малым сопротивлением для всех гармоник тока, а постоянная составляющая — черезRн.Коэффициент пульсации Кпф в данном случае можно определить по формуле (рис. 2.3)
Зависимость среднего значения выпрямленного напряжения отсреднего значения тока нагрузки I, то есть U=f(I)называютвнешней характеристикой выпрямителя. Вид внешних характеристик выпрямителя без фильтра и с емкостным фильтром показан на рис. 2.4.
Рассмотрим внешнюю характеристику выпрямителя без сглаживающего фильтра. Без учета падений напряжения на элементах выпрямителя напряжение Uсвязано с напряжением U2 соотношением U=0,9U2.
Для реального выпрямителя это соотношение справедливо при токе нагрузки I=0. При I ≠ 0 при протекании токов через элементы выпрямителя (диоды, соединительные провода, источник U2)на них создаются падения напряжения, вследствие чего выпрямленное напряжениеUуменьшается (рис. 2.4). Увеличение тока I приводит к большим падениям напряжения на элементах выпрямителя и, соответственно, к снижению напряжения U.Поэтому внешняя характеристика выпрямителя имеет падающий характер.
Рис. 2.4. Внешние характеристики однофазного выпрямителя (U=f(I): 1 — без фильтра; 2—с фильтром
При наличии емкостного фильтра при холостом ходе (I = )конденсатор заряжается до амплитудного значения напряжения U2m,т.е.U = √2U2. При увеличении тока нагрузки I снижение напряженияUсвязано с более быстрым разрядом конденсатора. Поэтому наклон внешней характеристики выпрямителя с емкостным фильтром больше, чем без фильтра.
Мостовой тип устройства
Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца.
Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.
Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы. Диод ведёт себя как тиристор, загружаемый без задержки.
Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:
U31 = -U13U23 = -U32U21 = -U12.
Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В. Популярные модели мостовых выпрямителей представлены в таблице ниже:
Таблица характеристик популярных моделей мостовых выпрямителей.
Схема работы устройства
Мостовой выпрямитель состоит из четырёх диодов, соединённых в форме «моста», причём вторичная обмотка трансформатора соединяется через противоположные углы «моста», а сопротивление нагрузки соединяется через другие два угла. Выходное напряжение мостового выпрямителя в два раза больше, чем у двухполупериодного выпрямителя, поскольку через «мост» протекает воздействие всего напряжения вторичной обмотки.
В течение первой половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D1, через сопротивление нагрузки RL, через диод D3, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.
В течение второй половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D4, через сопротивление нагрузки RL, через диод D2, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.
Свойства трехфазного напряжения
Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.
Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.
Будет интересно Что такое статическое электричество и как от него избавиться
Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов.
Таким образом, можно суммировать следующие моменты:
- 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
- среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
- нейтраль не используется трехфазным выпрямителем.
Сравнение однофазных и трехфазных устройств
При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:
- первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз),
- выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке,
- с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.
Расчет трехфазного выпрямителя также будет сложнее, так как в этом случае учитываются векторные составляющие действующих токов и напряжений. Это объясняется тем, что в цепях 380 Вольт фазные параметры смещены относительно друга на 120 градусов.
Особенности трехфазного моста и варианты его построения
Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».
Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.
В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.
Полноволновой полууправляемый мостовой выпрямитель
Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.
Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.
Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.
В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.
Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.
Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.
Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.
Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:
Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя. Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя . Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя
Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .
Электрические параметры
У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
- Iобр – постоянный обратный ток, мкА;
- Uпр – постоянное прямое напряжение, В;
- Iпр max – максимально допустимый прямой ток, А;
- Uобр max – максимально допустимое обратное напряжение, В;
- Р max – максимально допустимая мощность, рассеиваемая на диоде;
- Рабочая частота, кГц;
- Рабочая температура, С.
Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.
Схема простого выпрямителя переменного тока на одном диоде
На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).
При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).
В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Будет интересно Как работает диод с барьером Шоттки
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.
Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.
Силовой выпрямительный диод.
Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.
Схема 3-фазного частотника
Преобразователи напряжения импульсные
Тиристорные трехфазные преобразователи частоты используются для управления мощной нагрузкой и находят применение там, где нет возможности включения оборудования на IGBT транзисторах.
Различают два класса устройств по принципу коммутации управляющих элементов:
- С одноступенчатой коммутацией;
- Двухступенчатые.
Одноступенчатые устройства отличаются простой схемотехникой, но не обладают возможностью регулировки выходного напряжения, поскольку управление производится всеми тиристорами одновременно. Регулирование напряжения идет путем установки в цепи постоянного питающего напряжения через установку регулируемого выпрямителя.
В свою очередь, двухступенчатые преобразователи делятся на схемы:
- С групповой коммутацией;
- С пофазной коммутацией;
- С индивидуальным управлением.
Данные устройства сложнее не только схемой управления, но и силовой частью, поскольку в них присутствует две группы тиристоров: анодные и катодные.
Пофазная коммутация
Управление осуществляется раздельно по каждой фазе преобразования путем отключения анодного или катодного тиристора.
Индивидуальная коммутация
Здесь управление производится каждым тиристором преобразователя раздельно. За счет индивидуального управления можно реализовывать большое число алгоритмов преобразования, снижать до минимума искажения формы сигнала и уровень электромагнитных помех.
Трехфазные выпрямители: нулевой, мостовой
Трёхфазный выпрямитель — устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо-Добровольского.
Наиболее простым и надежным является трехфазный нулевой выпрямитель. В связи с тем что на вторичной стороне трансформатора выпрямляются полуволны напряжения одной полярности, достаточно на первичной стороне трансформатора управлять полуволнами напряжения также только одной полярности. Схема трехфазного нулевого выпрямителя с однотактным вентильным управлением на первичной стороне трансформатора приведена на рис. 1
. Первичная обмотка трехфазного трехстержневого трансформатора соединена треугольником с включением в каждую фазу по одному управляемому вентилю. Управляемые вентили отпираются поочередно через 120° соответственно периодичности выпрямленного напряжения при т=3.
При включении управляемого вентиля к соответствующей фазе первичной обмотки подводится полуволна линейного напряжения сети, которая трансформируется на вторичную сторону и через неуправляемые вентили данной фазы подводится к цепи сварочного контура. Продолжительность проводимости вентилей каждой фазы на вторичной стороне трансформатора составляет 2π/3+γ, где γ — угол коммутации при передаче выпрямленного тока с фазы на фазу.
Диаграммы токов и напряжений в элементах схемы выпрямителя при условии пренебрежения падением напряжения на вентилях, намагничивающей составляющей фазных токов трансформатора и пульсациями выпрямленного тока приведены на рис. 2. При этом угол фазового регулирования α=0. Диаграммы для шестифазных выпрямителей, рассматриваемые ниже, соответствуют этим же условиям. На оси 1 даны линейные напряжения сети иАB, иВC, Uca и выпрямленное напряжение ud на оси 2 — вторичные фазные токи i2a, i2b, i2c (токи неуправляемых вентилей) и первичные фазные токи i1a, i1b, i1c (токи управляемых вентилей, которые на рис. 2 не обозначены, так как по форме подобны вторичным фазным токам); на осях 3, 4, 5 — линейные токи сети iA, iB, iC. Несмотря на униполярный характер первичных фазных токов, магнитопровод трехфазного трансформатора перемагничивается за период напряжения сети. Это связано с тем, что изменения магнитного потока в каждом стержне магнитопровода при работе «своей» фазы и поочередной работе двух других фаз противоположны по знаку.
Однофазная мостовая схема выпрямления (рис. а) содержит четыре диода V1—V4, соединенных по схеме моста и подключенных к сети переменного тока через трансформатор Т или напрямую. Трансформатор позволяет согласовать напряжение сети и выпрямленное напряжение нагрузки. В одну диагональ моста (точки 1 и 3) включен источник переменного напряжения, а в другую (точки 2 и 4) — нагрузка Rн. Общая точка 2 катодных выводов служит положительным полюсом выпрямителя, а точка 4 анодных выводов — отрицательным. В однофазной мостовой схеме диоды работают поочередно парами V1 , V3 и V2, V4 (рис. 5.6, б). В положительный полупериод напряжения и2ф ток проходит через диод V1 нагрузку Rн к диоду V3.
Рис. 5.6 Однофазная мостовая схема выпрямления (а). Графики напряжений и тока в трансформаторе ( б), напряжения и тока в нагрузке (в)
Так как в это время диоды V2, V4 закрыты, к ним прикладывается обратное напряжение, наибольшее значение которого л/2 и 2ф. В отрицательный полупериод ток проходит через диод V2, нагрузку Rн к диоду V4. При этом обратное напряжение прикладывается к диодам V1 и V3. Таким образом, ток в цепи нагрузки в каждый период проходит в одном направлении, и его среднее значение зависит от выпрямленного напряжения и сопротивления нагрузки.