Преимущества и недостатки ТТР
Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.
Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек
К таким достоинствам относят:
- Низкое потребление электроэнергии (на 90% меньше).
- Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
- Высокая скорость запуска и отключения
- Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
- Не предполагается техническое обслуживание.
- Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
- Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
- Отсутствие электромагнитных помех при срабатывании.
- Исключается порча контактов вследствие их механического удара.
- Отсутствие прямого физического контакта между цепями управления и коммутации.
- Возможность регулирования нагрузки.
- Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
- Возможность использования во взрывоопасных средах.
Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.
Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)
ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.
К минусам относят:
- Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
- Высокая стоимость.
- Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
- Ограничения по использованию в условиях повышенной влажности.
- Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
- Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
- Возможность расплавления устройства от нагрева при коротком замыкании.
- Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.
Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.
Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.
Это интересно: Перегорают галогеновые лампочки в люстре: в чем причина?
Твердотельное реле – устройство и особенности конструкции
На температурный режим могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).
Защита
- Твердотельные реле имеют встроенную RC-цепь для защиты от ложного включения при использовании на индуктивной нагрузке.
- Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы.Они подбираются исходя из величины коммутируемого напряжения Uвар=1,6-2Uком. Следует отметить, что современные ТР выдерживают значительные перенапряжения и без применения варисторов. Гораздо опаснее для ТР перегрузка по току.
- Для защиты от перегрузки по току необходимо использовать специальные быстродействующие полупроводниковые предохранители. Они подбираются с учетом величины номинального тока реле Iпр=1 — 1,3Iном., причем само ТР должно быть с гораздо большим запасом по току, в т.ч.учитывая пусковые токи нагрузки. Это самый эффективный способ защитить ТР от перегрузки по току. Поскольку реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты не спасет их от выхода из строя.
- Для корректной работы твердотельного реле при маленьких токах нагрузки (соизмеримых с током утечки) необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.
Примеры применения
Основное применение ТР находят в системах управления нагревом.
Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах, где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим).
При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.
Твердотельные реле ZA2 чаще применяют в системах, где не требуется высокая точность поддержания температуры (двухпозиционный режим).
Твердотельные реле VA (управление переменным резистором) применяют для ручной регулировки мощности на нагрузке.
Таким устройством можно отрегулировать мощность ТЭНа или ИК-излучателя, изменять яркость свечения лампы накаливания.
Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и ТР подбирать с многократным запасом по току.
Применять меры по дополнительному отводу тепла. Для защиты ТР от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.
Можно организовать управление группой реле от одного источника питания.
В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения – выключения отдельного реле для управления требуемой зоной.
Последовательность работ выполняемых при замене реле
Для начала следует отключить питание от аккумуляторной батареи, потому что пока подключена электрическая цепь, демонтировать и разбирать стартер запрещено, иначе может произойти замыкание и вы сожжете всю проводку.
- Перед разборкой хорошо очищаем стартер от пыли и грязи, что бы потом грязь не попала во внутрь.
- Откручиваем гайку щеточного узла с болта тягового реле и снимаем контакт с болта.
- Откручиваем стяжные винты крепящие реле к массе и вытаскиваем его.
- Откручиваем с торца гайки и разделяем его на две части
- Вытаскиваем старый сердечник меняем на новый
- Собираем все во обратном порядке устанавливаем втягивающее
- Проверяем весь механизм и ставим на машину
После того как все детали установили на авто проверяем еще раз на работоспособность, что бы быть уверенным, что мы все сделали правильно и у нас все работает должным образом.
Конструкция
Устройство твердотельного реле — это электронная плата, состоящая из силового ключа, элемента развязки и узла управления. В качестве силовых элементов могут быть использованы:
- для цепей постоянного тока: транзисторы, полевые транзисторы, составные транзисторы MOSFET или модули IGBT.
- для управления цепями с переменным напряжением устанавливают симисторные ключи или тиристорные сборки.
В качестве элемента развязки устанавливают оптроны — это устройство состоит из светоизлучающего элемента и фото приемника, разделенных прозрачным диэлектриком. Узел управления представляет собой схему стабилизации напряжения и тока для светоизлучающего элемента в оптроне.
Как видно из схемы, входы управления под номерами 3 и 4, а выход — клеммы 1 и 2. В данной схеме входной сигнал может быть от 70 вольт до 280 переменного напряжения, а напряжение на нагрузке может достигать 480 вольт. Не имеет значения, на каком контакте расположен потребитель, до или после реле.
Условное обозначение твердотельного реле на схеме может выглядеть так (для увеличения нажмите на картинку):
Что касается схемы подключения, в ней аппарат установлен после нагрузки, соединяя его с землей. При таком подключении в случае короткого замыкания на землю, реле исключается из цепочки протекания тока.
Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется, как работает твердотельное реле и из чего оно состоит:
Вот мы и рассмотрели назначение, область применения и конструкцию твердотельного реле. Надеемся, предоставленная информация была полезной и понятной!
Наверняка вы не знаете:
- Для чего нужна релейная защита
- Как работает магнитный пускатель
- Системы дистанционного управления освещением
Виды твердотельных реле
По нагрузке
Конкретный тип прибора определяется разновидностью используемой нагрузки. По этому параметру реле делятся на однофазные и трёхфазные:
- Однофазные работают с током от 10 до 120 А, либо от 100 до 500 А. Регулирование фазы происходит за счёт аналогового сигнала и элемента сопротивления.
- Трёхфазные приборы осуществляют соединение на всех трёх участках сразу. Их рабочий диапазон также составляет от 10 до 120 А. Существуют отдельные вариации приборов, работающих по принципу реверса и осуществляющих бесконтактную коммутацию.
По конструкции
По разновидности конструкции твердотельные реле могут быть:
- Стандартные. Закрепляются на переходные планки;
- Предназначенные для установки на металлический профиль (DIN-рейки).
По типу управления
По типу управления и характеристикам используемого напряжения приборы делятся на:
Устройства постоянного тока. Работают под действием стабильного электричества. Параметры мощности – от 3 до 32 Вт. Для данного типа характерны большие удельные показатели, наличие светодиодных индикаторов, высокий параметр надёжности. Практически для всех наименований приборов оптимальной рабочей температурой являются цифры от -30 до +70°C.
Устройства с мануальным управлением. В них вы можете сами выбрать оптимальный тип действия. Подобная функция реализована за счёт использования переменных резисторов.
По методу коммутации
Исходя из метода коммутации, приборы подразделяются на:
Осуществляющие переход через 0. Способны регулировать нагрузки емкостные, редуктивные, а также низкие индукции. При подаче сигнала управления, напряжение на выходе возникает в момент достижения напряжением линейным нулевой отметки.
Вследствие чего наблюдается снижение стартового показателя тока, устраняются сторонние помехи и повышается длительность использования коммутируемых параметров. Этот подвид реле не способен осуществлять коммутацию высоких индукций, для условных трансформаторов, работающих в режиме ХХ, он недопустим к применению.
С моментальной (случайной) активацией. Эти устройства идут в ход, если нам требуется очень быстрое включение. Напряжение на выходе появляется вместе с пуском сигнала управления. Задержка активации, как правило, составляет не больше 1 мс. Большой минус таких приборов – импульсные погрешности, а также изначальные броски тока, наблюдаемые при изменении параметров.
Изготовление твердотельного реле своими руками
Непосредственно своими руками, каждому электронщику среднего уровня под силу собрать простое твердотельное реле. Прибор, сделанный своими руками, может использоваться для управления нагрузкой, питаемой от бытовой сети переменного тока.
К примеру, вполне допустимо сделать более эффективным управление лампами освещения или электродвигателями, если собрать электронный регулируемый коммутатор по схеме, представленной ниже на картинке. Сборка не представляется трудным делом, учитывая минимум используемых электронных компонентов.
Схема для сборки своими руками под нагрузку 300-600 Вт при напряжении 120 — 220В: 1 — оптопара МОС 320, МОС 341; 2 — симистор BTA06-600B; 3 — управляющий сигнал от микроконтроллера
Схема основана на электронном устройстве развязки — оптопаре MOC 3020. Между тем опто-симисторный регулятор MOC 3041 имеет те же характеристики, но дополнительно наделён встроенной системой детектирования пересечения точки нуля.
Этот вариант позволяет получить полную мощность без тяжелых пусковых токов при переключении индуктивных нагрузок. Благодаря диоду D1 предотвращается повреждение схемы по причине обратного подключения входного напряжения.
Резистор R3, номиналом 56 Ом, шунтирует прохождение токов, когда симистор находится в состоянии закрытого перехода, исключая ложное срабатывание. Этим же резистором организуется связь терминала затвора с нижним по схеме электродом, чем обеспечивается полное закрытие перехода симистора.
Если используется входной сигнал широтно-импульсной модуляции, частота переключения режимов «включено-отключено» должна быть установлена максимум на 10 Гц не более для нагрузки переменного тока. В противном случае, переключение состояния выходной цепи реле может быть нарушено.
Подробный видео-рассказ о принципах работы ТТР
Видеоролик ниже достаточно подробно показывает все тонкости функционирования электрических приборов, получивших название — твердотельное реле. Такие знания непременно пригодятся на практике, связанной с обслуживанием электрических систем:
При помощи информации: Electronics-tutorials
Твердотельное реле своими руками: рекомендации по подбору деталей и монтаж корпуса
- F1 — предохранитель на 100 мА.
- S1 — любой маломощный переключатель.
- C1 — конденсатор 0.063 мкФ 630 Вольт.
- C2 — 10–100 мкФ 25 Вольт.
- C3 — 2.7 нФ 50 Вольт.
- C4 — 0.047 мкФ 630 Вольт.
- R1 — 470 кОм 0.25 Ватт.
- R2 — 100 Ом 0.25 Ватт.
- R3 — 330 Ом 0.5 Ватт.
- R4 — 470 Ом 2 Ватта.
- R5 — 47 Ом 5 Ватт.
- R6 — 470 кОм 0.25 Ватт.
- R7 — варистор TVR12471, или подобный.
- R8 — нагрузка.
- D1 — любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например, 1N4007.
- D2 — стабилитрон на 6.2 Вольта.
- D3 — диод 1N4007.
- T1 — симистор ВТ138-800.
- LED1 — любой сигнальный светодиод.
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Читать далее: Остекление балкона своими руками пошаговая инструкция
Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем
На следующем этапе подготовленная пластина оснащается «опалубкой» — по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).
Как сделать ТТР своими руками?
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Электронные компоненты для сборки схемы
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка собранной схемы на работоспособность
Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Устройство монолитного корпуса
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.
На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).
Приготовление компаунда и заливка корпуса
Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:
- Эпоксидная смола без отвердителя.
- Порошок алебастра.
Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.
Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.
Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.
По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.
Твердотельное реле своими руками
Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.
То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»
В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить. Еще одна статья – «Транзисторный ключ с оптической развязкой»
В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.
Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»
Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.
Как выбрать полупроводниковое устройство?
Покупая твердотельное реле нужно обратить внимание на его основные характеристики:
- Вид SSR.
- Материал корпуса.
- Тип включения – быстрый или постепенный.
- Производитель.
- Наличие крепежей.
- Уровень потребления электроэнергии.
- Размер ТТР.
- Необходимо учесть коммутируемый регулятор напряжение.
Важно! Реле должно иметь большой запас мощности напряжения для его надежного и продолжительного использования. Иначе при скачке напряжения произойдёт поломка
Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно
Осуществлению этого способствует полупроводниковое устройство
Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно. Осуществлению этого способствует полупроводниковое устройство
При верном подборе типа SSR и правильной установке, оно будет долговечно
При верном подборе типа SSR и правильной установке, оно будет долговечно.
Недостатки
Кроме положительных качеств твердотельных реле, стоит выделить и ряд недостатков:
- В открытом виде происходит нагрев изделия из-за высокого сопротивления в цепи p-n перехода. Чтобы избежать негативных последствий в приборах, пропускающих через себя повышенные токи, требуется предусмотреть охлаждение.
- В закрытом виде сопротивление увеличивается, и появляется обратный ток утечки (измеряется в мА).
- При съеме вольтамперной характеристики заметен ее нелинейный характер.
- Некоторые виды твердотельных реле требуют строго соблюдения полярности при подключении выходных цепей. Это касается тех приборов, которые рассчитаны на работу в условиях постоянного тока.
- В случае поломки высок риск перекрытия контактов на входе. Причиной может стать пробой силового ключа. Для сравнения контакты классических реле (при выходе из строя) остаются в разомкнутом виде.
- Требуется защита от ошибочных срабатываний, вызванных бросками напряжения. Это обусловлено высокой скоростью срабатывания.
- Твердотельные реле пропускают ток по обратному пути с небольшой задержкой, что обусловлено применением полупроводниковых элементов в схеме.
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
- подача тока на первое коммутационное устройство;
- от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Watch this video on YouTube
Электронное реле
Электронное реле управления в схеме прибора
Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.