Как подключить однофазный двигатель

Что такое однофазный двигатель

Однофазный двигатель — это тип электрического двигателя, который работает от однофазного электрического тока.

Он состоит из статора — неподвижной части двигателя, и ротора — вращающейся части, которая взаимодействует с магнитным полем статора для создания вращательного движения.

Однофазные двигатели обычно используются в различных бытовых устройствах, таких как вентиляторы, насосы и стиральные машины.

Они имеют простую конструкцию и низкую стоимость, что делает их популярным выбором для различных приложений, где требуется небольшая мощность.

Однако, в отличие от трехфазных двигателей, однофазные двигатели имеют ограничения в плане мощности и могут быть менее эффективными.

Преимущества и недостатки однофазных двигателей

Преимущества
Недостатки

  • Простая конструкция
  • Низкая стоимость
  • Широко применяются в бытовых устройствах
  • Ограничение в плане мощности
  • Может иметь низкую эффективность

Определение однофазного двигателя

Однофазный двигатель — это электрический двигатель, который работает от однофазного переменного тока. Он широко используется в бытовых и промышленных устройствах, таких как вентиляторы, помпы, стиральные машины и другие устройства, которые требуют вращающегося движения.

Принцип работы однофазного двигателя основывается на создании магнитного поля, которое воздействует на обмотки статора и вызывает вращение ротора. Особенностью однофазного двигателя является наличие дополнительной обмотки — стартовой или помощной, которая используется при запуске двигателя.

Однофазные двигатели могут быть синхронными или асинхронными. Синхронные двигатели работают с постоянной скоростью в зависимости от частоты альтернативного тока, а асинхронные двигатели имеют скользящее вращение и обычно имеют большую мощность.

Важно отметить, что подключение однофазного двигателя требует правильной последовательности проводов и использования специальных элементов, таких как конденсаторы и реле, для обеспечения правильного запуска и работы двигателя

Применение однофазного двигателя

Однофазные двигатели широко применяются в различных областях, включая бытовую технику и промышленность. Они являются неотъемлемой частью многих устройств и оборудования, обеспечивая их работу в широком диапазоне условий. Вот некоторые основные области применения однофазных двигателей:

  1. Бытовая техника: Однофазные двигатели используются во многих бытовых приборах, таких как стиральные машины, холодильники, кондиционеры и пылесосы. Они обеспечивают плавное вращение и надежную работу этих устройств.
  2. Промышленность: Однофазные двигатели широко применяются в различных отраслях промышленности, включая оборудование для пищевой промышленности, автоматизированные производственные системы, оборудование для строительства и другие промышленные процессы. Они обеспечивают привод и плавное вращение оборудования.
  3. Сельскохозяйственные машины: Однофазные двигатели используются в различных сельскохозяйственных машинах, таких как насосы для полива, мотоблоки и другой садово-огородный инструмент. Они обеспечивают эффективную и надежную работу этих машин.
  4. Автомобильная промышленность: Однофазные двигатели применяются в автомобильной промышленности для привода различных систем и механизмов, таких как вентиляторы охлаждения, насосы и механизмы питания. Они обеспечивают надежную работу автомобилей.

Применение однофазных двигателей охватывает огромный спектр областей и технических систем. Они обеспечивают эффективность, надежность и долговечность работы различных устройств и оборудования.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы

Смотрите пример.

Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:

Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения – например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ – например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы

Теперь важно не перепутать

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

Обратите внимание

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Важно

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Преимущества механизма двигателя однофазного типа.

Среди достоинств 1-фазных двигателей отмечают следующие:

  • простота конструкции;
  • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
  • надёжность;
  • экономичность – потребление небольшого количества энергии;
  • доступная стоимость;
  • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
  • минимальный уход;
  • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику. Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

  • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
  • высокий показатель пускового тока;
  • возможность ограничения скорости движка при колебаниях в сети.

Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций бывает много, особенно у тех, кто живет в собственном частном доме. Например, необходимо установить в гараже болгарку с асинхронным электродвигателем, которая питается от трехфазной сети переменного тока.

А к участку проведена только однофазная сеть на 220 В. Что я должен делать? В принципе, это не проблема, ведь к однофазной сети можно подключить любой трехфазный электродвигатель, главное знать, как это сделать.

Так что наша задача в этой статье разобраться с положением — подключение асинхронного двигателя к 220 вольтам.

Совет

Есть две классические схемы такого подключения, где присутствуют конденсаторы. То есть сам электродвигатель будет не асинхронным, а конденсаторным. Вот диаграммы:

Конечно, это не единственные варианты, но в этой статье мы поговорим о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочие и пусковые, что в свою очередь называется фазосдвигающими. А так как эти элементы в этой схеме самые важные, то самым важным моментом является правильный выбор конденсатора по емкости, которая будет соответствовать мощности двигателя.

Выбираем конденсаторы

Есть формула, по которой можно рассчитать емкость. Правда, для схем звезда и треугольник он отличается на коэффициент. Для созвездия формула выглядит следующим образом:

С = 2800*I/U, где I — ток, который можно измерить в питающей линии клещами, U — напряжение однофазной сети — 220 В.

https://www.youtube.com/watch?v=Ne4ccjbUY9M

Формула треугольника:

С=4800*И/ед.

Здесь проблема может заключаться только в определении силы тока, просто пассатижей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С = 66*Р, где Р — мощность электродвигателя, которая указывается на шильдике двигателя или в паспорте. Фактически получается, что емкости рабочего конденсатора в размере 7 мкФ должно хватить на мощность двигателя 0,1 кВт.

Обычно электрики принимают это соотношение, когда сталкиваются с вопросом, как подключить асинхронный двигатель от 380 до 220 В

И еще — конденсатор управляет током, поэтому так важно правильно подобрать емкость

Что касается пускового конденсатора, то его необходимо устанавливать в цепь, если при пуске двигателя применяется хотя бы минимальная нагрузка. Обычно он включается буквально на несколько секунд, пока ротор не наберет обороты. После этого он просто отключается. Если по какой-то причине пусковой конденсатор не отключить, произойдет перекос фаз и двигатель перегреется.

Есть еще один показатель, на который нужно обращать внимание при выборе. Это волнение

Правило здесь только одно: напряжение конденсатора должно быть в 1,5 раза выше напряжения однофазной сети.

Тип конденсаторов

В качестве пусковых и рабочих конденсаторов специалисты рекомендуют использовать одни и те же модели. Самый простой вариант – бумажные конструкции в герметичной металлической коробке.

Правда, у них есть один существенный недостаток – большие габаритные размеры.

Поэтому, если перед вами встанет вопрос, как подключить двигатель небольшой мощности 380 на 220 вольт, то количество таких конденсаторов будет приличное, и вся конструкция будет выглядеть не очень.

Для этих целей можно использовать электролитические приборы, но схема их подключения отличается от предыдущей, потому что в ней должны быть установлены резисторы и диоды. Кроме того, эти конденсаторы взрываются при пробое. Есть более современные виды – это полипропиленовые модели металлизированного типа. Они хорошо себя зарекомендовали, претензий к ним у специалистов сейчас нет.

Полезные советы

Обращаем внимание на то, что при подключении трехфазного двигателя к однофазной сети также можно говорить о снижении мощности электроприбора. В целом реальная ставка не превысит номинальные 70-80%

При этом скорость вращения ротора не уменьшится.
Если используемый двигатель имеет схему включения 380/220, это должно быть указано на заводской табличке, тогда он должен подключаться только к однофазной сети треугольником.
В случае, если на шильдике указана схема соединения звездой и только трехфазное соединение на 380 вольт, нужно вскрыть распределительную коробку и добраться до соединения концов обмоток двигателя. Поскольку внутри агрегата уже установлена ​​схема звезды, ее необходимо разобрать и вынуть шесть концов обмотки статора.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий